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High order methods for hyperbolic PDEs

Time-dependent solutions of
hyperbolic equations.

Low numerical dissipation and
dispersion.

High order approximations:
more accurate per unknown.

High performance on many-core
(explicit time-stepping).

Figure courtesy of Axel Modave.
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High order methods for hyperbolic PDEs

Time-dependent solutions of
hyperbolic equations.

Low numerical dissipation and
dispersion.

High order approximations:
more accurate per unknown.

High performance on many-core
(explicit time-stepping).

A graphics processing unit (GPU).
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Multi-patch discontinuous Galerkin formulations

Wave propagation problems
(acoustics, Maxwells, elasticity).

Model problem: acoustic wave
equation (both first and second
order formulations)

1

c2

∂p

∂t
+∇ · u = f

∂u
∂t

+∇p = 0.

D1 D2

⌦

�1(bx)

�2(bx)

bD

Multiple geometric patches, weak patch coupling through DG-like
numerical interface flux (SIPG, upwind).

Langer et al (2014). Multipatch discontinuous Galerkin isogeometric analysis.

Wilcox et al (2010). A high-order DG method for wave propagation through coupled elastic-acoustic media.
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Explicit solvers for multi-patch DG-IGA

Semi-discrete system:

Mh
du
dt

= Ahu ⇒ du
dt

= M−1
h Ahu.

Global mass matrix Mh is (patch) block diagonal.

Challenges and questions:

How to efficiently invert 3D patch mass matrices while guaranteeing
accuracy and stability (especially for explicit methods)?

Do splines/IGA offer advantages over C 0-FEM/DG for explicit solvers?

Can we tailor IGA discretizations towards explicit time-stepping?
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Inverting IGA mass matrices

B-splines: assumptions for this talk

Reference coordinates x̂ ∈ D̂, physical coordinates x ∈ Dk .

Standard 1D B-splines: B0
i (x̂) = 1ξi≤x̂≤ξi+1

,

Bk
i (x̂) =

x̂ − ξi
ξi+p − ξi

Bk−1
i (x̂) +

ξi+p+1 − x̂

ξi+p+1 − ξi+1
Bk−1
i+1 (x̂).

Physical basis: mapping of tensor product basis on reference domain

Bp
ijk(x̂) = Bp

i (x̂)Bp
j (ŷ)Bp

k (ẑ).

Assume maximally continuous, open knot vectors

ξp+1 < . . . < ξp+1+K ,

ξ1 = . . . = ξp+1,

ξp+1+K = . . . = ξ2p+1+K .
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Inverting IGA mass matrices

IGA mass matrices: stability/accuracy vs efficiency

Energy stability: if uTAhu ≤ 0, semi-discrete solution won’t blow up

Mh
du
dt

= Ahu =⇒ d

dt

(
uTMhu

)
=

1

2

∂

∂t
‖u‖2

L2 ≤ 0.

Approximating M−1
h impacts semi-discrete stability and accuracy.

Curved patch mass matrices MJ : tensor product basis Bp
ijk(x̂)

(MJ)ijk,lmn =

∫

D̂
Bp
ijk(x̂)Bp

lmn(x̂)J(x̂) dx̂ , (B-splines)

No Kronecker structure due to J(x̂): Mh expensive to invert in 3D!
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Inverting IGA mass matrices

Approximate mass matrix inversion

Mass lumping: loss of high order accuracy for IGA.

Preconditioning:

Additional cost and complexity for a time-domain code.

Semi-discrete stability requires approximation of M−1
J to induce a norm

on u (e.g. a fixed symmetric positive-definite linear operator).

Example: Krylov methods approximate M−1
J as a non-linear operator!

Isogeometric collocation: restores tensor product structure, but
semi-discrete stability is more difficult to prove.

Gao and Calo (2014). Fast isogeometric solvers for explicit dynamics.

Evans, Hiemstra, Hughes, Reali (2017). Explicit higher-order accurate IG collocation methods for structural dynamics.

Wathen and Rees (2009). Chebyshev semi-iteration in preconditioning for problems including the mass matrix.

Auricchio et al (2012). Isogeometric collocation for elastostatics and explicit dynamics.
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Inverting IGA mass matrices

An energy stable and efficient approximation to M−1

Replace MJ with symmetric pos-def “weight-adjusted” approximation:

MJu ⇒ M̂M−1
1/JM̂u,

(
M̂
)
ijk,lmn

=

∫

D̂
Bp
ijk(x̂)Bp

lmn(x̂) dx̂ .

Weight-adjusted inverse: Kronecker product, matrix-free eval. of M1/J

M−1
J ≈

(
M̂M−1

1/JM̂
)−1

= M̂−1M1/JM̂−1

M̂−1 = M̂−1
1D ⊗ M̂−1

1D ⊗ M̂−1
1D .

Energy stability with respect to an equivalent norm

C1(J) ‖u‖M̂M−1
1/J

M̂ ≤ ‖u‖MJ
≤ C2 ‖u‖M̂M−1

1/J
M̂ .

Chan, Hewett, Warburton (2016). Weight-adjusted DG methods: wave prop. in heterogeneous media.

Chan, Hewett, Warburton (2016). Weight-adjusted DG methods: curvilinear meshes.
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Inverting IGA mass matrices

Accuracy: weighted vs weight-adjusted mass matrix

(a) Warped mesh

10−1 10−0.5
10−17

10−9

10−1

Mesh size h
L

2
er

ro
r

L2 projection

Weight-adjusted

Difference

(b) Error for acoustics (first order form)

Figure: L2 errors for the acoustic wave equation using weighted and
weight-adjusted mass matrices for tensor product p = 4 splines.
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Inverting IGA mass matrices

Accuracy of the weight-adjusted mass matrix

Difference between the weighted L2 and weight-adjusted inner
products is high order accurate: for v(x) of degree q,

∣∣∣vTMJu − vTM̂M−1
1/JM̂u

∣∣∣
≤ CJ ‖J‖W p+1,∞(Dk) h

2p+2−q ‖u‖W p+1,2(Dk) .

Difference between L2 and weight-adjusted projection is O(hp+2)!

∥∥∥Phu − P̃hu
∥∥∥
L2(Dk)

.

∥∥∥∥
1√
J

∥∥∥∥
2

L∞
‖J‖W p+1,∞(Dk) h

p+2 ‖u‖W p+1,2(Dk) .

Chan, Wilcox (2018). On discretely entropy stable weight-adjusted discontinuous Galerkin methods: curvilinear meshes.
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Why splines vs C0-FEM? CFL restrictions
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Why splines vs C0-FEM? CFL restrictions

Estimating the CFL restriction

For explicit time-stepping method: estimate dt ∝ 1
max|λj |

Mhv = λAhv .

Bendixon-Hirsch lemma: bound Re (λj) , Im (λj) using the symmetric
and skew-symmetric parts of Ah

1

2

(
Ah + AT

h

)

︸ ︷︷ ︸
Asym

+
1

2

(
Ah − AT

h

)

︸ ︷︷ ︸
Askew

,
|Re (λj)| ≤ ρ

(
M−1

h Asym

)
,

|Im (λj)| ≤ ρ
(
M−1

h Askew

)
.

ρ
(
M−1

h Asym

)
, ρ
(
M−1

h Askew

)
: generalized Rayleigh quotients

ρ
(
M−1

h Asym

)
=

uTAsymu
uTMhu

, ρ
(
M−1

h Askew

)
=
|u∗(iAskew)u|

u∗Mhu
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Why splines vs C0-FEM? CFL restrictions

CFL: constants in trace and inverse inequalities

For hyperbolic problems (advection, acoustics), can bound

uTAsymu
uTMhu

.
‖u‖2

L2(∂Dk)

‖u‖2
L2(Dk)

.
CT

h
,

|u∗(iAskew)u|
u∗Mhu

.
‖∇u‖L2(Dk)

‖u‖L2(Dk)
.

CI

h
.

CT ,CI : p-dependent constants in trace, inverse inequalities

‖∇u‖
L2(D̂) ≤ CI ‖u‖L2(D̂) , ‖u‖2

L2(∂D̂) ≤ CT ‖u‖2
L2(D̂) .

Summary: dt ∝ 1
max|λj | ≤

h
maxCT ,CI

. What do CT ,CI look like? Can

compute CT ,CI using a generalized eigenvalue problem.
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Why splines vs C0-FEM? CFL restrictions

Trace and inverse inequality constants: C 0-FEM vs splines

ℎ = #
$

#

1 2 $⋯

1

2

$

⋮

Φ*(,-)

Parametric	Patch	9:

Physical	Patch	9*

Figure: A parametric patch has K elements per side, while a physical patch has
size H. The mesh resolution is h = H/K .
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Why splines vs C0-FEM? CFL restrictions

Trace and inverse inequality constants: C 0-FEM vs splines

5 10

0
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80

Degree of approximation p

Polynomial CI

Spline CI /K

(a) Inverse constants, K = 2p

5 10

0

20

40

60

Degree of approximation p

Polynomial CT

Spline CT /K

(b) Trace constants, K = 2p

Polynomial constants are O(p2), observed spline constants O(p) for K ≥ O(1/p).

�
�

�
�dt ∝ h

p2 for C 0-FEM and DG, dt ∝ h
p for IGA!

Takacs, Takacs (2016). Approximation error estimates and inverse inequalities for B-splines of maximum smoothness.
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Optimizing splines for explicit solvers
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Optimizing splines for explicit solvers

B-spline bases and optimal spline spaces

(c) Uniform knots (d) Optimal knots

Sup-inf: “worst best approximation” in X from Xn

dn(X ;Xn) = sup
x∈X

inf
y∈Xn

‖x − y‖ , dim (Xn) = n.

Spline spaces with optimal knot vectors: minimal sup-inf for

X =

{
f ∈ L2([−1, 1]) :

∂p−1f

∂xp−1
continuous, ‖f ‖L2 ≤ 1

}
,

Melkman and Micchelli (1978). Spline spaces are optimal for L2 n-width.
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Optimizing splines for explicit solvers

Optimal knot vectors: roots of eigenfunctions

(a) p = 2 (b) p = 3 (c) p = 4

Figure: Eigenfunctions yK+1,p(x) for K = 8 and various p.

Optimal knots are roots of eigenfunctions yK+1,p(x).

(−1)p
∂2py

∂x2p
= λy(x),

∂ky

∂xk
(−1) =

∂ky

∂xk
(1) = 0, 1 ≤ k ≤ p − 1.

Approximate yK+1,p(x) using fine spline space; difficult for high K , p!
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Optimizing splines for explicit solvers

Knot smoothing: approximating optimal knots

(a) Knots ξi (optimal in red) (b) Greville abscissae τj

Greville abscissae τj : coefficients for linear coordinate x .

x =
∑

1≤j≤p+K

τjB
p
j (x), τj =

1

p

∑

1≤i≤p
ξi+j−1, j = 1, . . . , p.

Replace Greville abscissae with equispaced points x̂i and iterate

ξ̃k+1
i =

∑

1≤j≤p+K

x̂iB
p
j (ξi ; ξ̃

k), ξ̃0
i = ξi ,
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Optimizing splines for explicit solvers

Approximation properties in 1D: oscillatory functions

0 5 10

10−4

10−2

100

Wavelength k

L
2

er
ro

r

Uniform knots

Smoothed knots

(a) First order formulation

0 5 10

10−4

10−2

100

Wavelength k

L
2

er
ro

r

Uniform knots

Smoothed knots

(b) Second order formulation

Figure: L2 errors for 1D acoustics using uniform and smoothed knot vectors:
smoothed knots emphasize high frequencies over low frequencies.
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Optimizing splines for explicit solvers

Approximation properties in 2D/3D: curvilinear domains

Smoothed knot vectors: more accurate on curved domains.

Differences between first, second order forms (L2 vs energy norm?).

(a) Warped mesh, α = 1/8

0 100 200

10−6

10−4

10−2

Degrees of freedom

L
2

er
ro

r

Uniform

Optimal

Smoothed

Polynomial

(b) L2 errors (α = 1/64)

Figure: L2 approx. errors: cos
(
πx
2

)
cos
(
πy
2

)
, p = 2, . . . , 8 and K = p.

Chan, Evans (Rice CAAM) Multi-patch IGA June 9-15, 2018 18 / 21



Optimizing splines for explicit solvers

Approximation properties in 2D/3D: curvilinear domains

Smoothed knot vectors: more accurate on curved domains.

Differences between first, second order forms (L2 vs energy norm?).

0 5 · 10−2 0.1
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Uniform knots

Smoothed knots

(a) First order formulation

0 5 · 10−2 0.1
10−3

10−2

10−1

Warping factor α

L
2

er
ro

r

Uniform knots

Smoothed knots

(b) Second order formulation

Figure: L2 errors w.r.t. curved warping for 2D acoustics (p = 3,K = 8 splines).
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Optimizing splines for explicit solvers

Smoothed knot vectors improve the CFL
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(a) Inverse constants, K = 2p
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Polynomial CT
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(b) Trace constants, K = 2p

Figure: Knot smoothing results in roughly 2× smaller trace, inverse constants.
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Optimizing splines for explicit solvers

Smoothed knot vectors improve the CFL

0 100 200 300

0

500

1,000
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2,000

Number of elements K

ρ
(A

h
)

p = 2

p = 3

p = 4

p = 5

(a) Uniform knots

0 100 200 300
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500

1,000

1,500

2,000
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p = 4

p = 5

(b) Smoothed knots

Figure: Growth of ρ (Ah) for advection using spline spaces of degree p = 2, . . . , 5.
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Optimizing splines for explicit solvers

Smoothed knot vectors improve the CFL
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(a) Uniform knots
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Number of elements K

(b) Smoothed knots

Figure: Growth of ρ (Ah) using an upwind flux and spline spaces of degree
p = 2, . . . , 8. Nearly p-independent CFL observed for advection, acoustics.
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Optimizing splines for explicit solvers

Acoustics: a 3D multi-patch example

12 patch pipe model, first order formulation, pulse inflow condition.

Isotropic p = 6,K = 16 splines, smoothed knots on each patch.
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Optimizing splines for explicit solvers

Summary and acknowledgements

Weight-adjusted mass matrix: restore Kronecker structure while
retaining energy stability and high order accuracy.

Improved O(h/p) CFL scaling for IGA, optimal L2 convergence rates.

Smoothed knots: improved CFL, better curved approximations.

Future directions: curl-conforming spline spaces (Maxwells).

This research is supported by DMS-1719818 and DMS-1712639.

Thank you! Questions?

Chan, Evans (2018). Multi-patch discontinuous Galerkin isogeometric analysis for wave propagation: explicit
time-stepping and efficient mass matrix inversion.
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Optimizing splines for explicit solvers

Additional slides
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Optimizing splines for explicit solvers

Patch refinement vs knot insertion (uniform knots)

Patch size H, number of sub-elements K : h = H/K .

Optimal O(hp+1) L2 error for both patch refinement, knot insertion.
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(a) First order (uniform knots)
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(b) Second order (uniform knots)
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Optimizing splines for explicit solvers

Behavior of weight-adjusted L2 projection

Comparison with L2 projection and Low-Storage Curvilinear DG

φ̃i =
φi√
J
, Mij =

∫

Dk

φ̃j φ̃iJ =

∫

D̂
φjφi = M̂ij .
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Figure: Arnold-type mesh with ‖J‖W N+1,∞ = O(h−1) for N = 3.
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Optimizing splines for explicit solvers

Behavior of weight-adjusted L2 projection

Comparison with L2 projection and Low-Storage Curvilinear DG
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Figure: Arnold-type mesh with ‖J‖W N+1,∞ = O(h−1) for N = 3.
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Optimizing splines for explicit solvers

Behavior of weight-adjusted L2 projection

Comparison with L2 projection and Low-Storage Curvilinear DG

φ̃i =
φi√
J
, Mij =

∫

Dk

φ̃j φ̃iJ =

∫

D̂
φjφi = M̂ij .
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Figure: Curvilinear mesh constructed through random perturbation for N = 3.
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Optimizing splines for explicit solvers

Behavior of weight-adjusted L2 projection

High order convergence slowed by growth of ‖J‖WN+1,∞ = O(hN).
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Figure: Moderately warped curved Arnold-type mesh for N = 3.
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Optimizing splines for explicit solvers

Behavior of weight-adjusted L2 projection

High order convergence is stalled by growth of ‖J‖WN+1,∞ = O(hN+1).

10−2 10−1 100
10−7

10−4

10−1

2

Mesh size h

L
2

er
ro

r
L2 proj

WADG

Figure: Heavily warped curved Arnold-type mesh for N = 3.
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Optimizing splines for explicit solvers

Weight-adjusted DG: not locally conservative

Con: loss of local conservation for w(x) 6∈ PN !

Pro: superconvergence of conservation error

Conservation error ≤ Ch2N+2 ‖w‖WN+1,∞ ‖p‖WN+1,2

where C depends on mesh quality and max/min values of w .

Pro: can restore local conservation with rank-1 update
(Shermann-Morrison).
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Optimizing splines for explicit solvers

Effect of conservation on shock speeds

Weighted Burgers’ equation, w(x) curves characteristic lines.

w(x)
∂u

∂t
+

1

2

∂u2

∂x
= 0.

WADG yields high order convergence, correct shock speed for both
w(x) smooth, discontinuous (within an element).

(a) Smooth solution (b) Shock solution
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Optimizing splines for explicit solvers

Effect of conservation on shock speeds

Weighted Burgers’ equation, w(x) curves characteristic lines.

w(x)
∂u

∂t
+

1

2

∂u2

∂x
= 0.

WADG yields high order convergence, correct shock speed for both
w(x) smooth, discontinuous (within an element).

Best guess: where and what is locally conserved matters;
non-conservation of nonlinear flux results in incorrect shock speeds.
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