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High order finite element methods for hyperbolic PDEs

m Focus: high accuracy
computational mechanics on
complex geometries.

m Applications in fluid dynamics
(waves, vorticular flows,
turbulence, shocks).
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High order finite element methods for hyperbolic PDEs

m Focus: high accuracy
computational mechanics on
complex geometries.

m Applications in fluid dynamics
(waves, vorticular flows,
turbulence, shocks).

m High order approximations are
more accurate per unknown.
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Number of Unknowns

For smooth solutions, high order methods
deliver a lower error per degree of freedom.
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High order finite element methods for hyperbolic PDEs

m Focus: high accuracy
computational mechanics on
complex geometries.

m Applications in fluid dynamics
(waves, vorticular flows,
turbulence, shocks).

m High order approximations are
more accurate per unknown.

Schematic of an NVIDIA graphics
m High performance computing processing unit (GPU).
on many-core architectures
(efficient explicit time-stepping).
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|
Why FEM? Theory on general unstructured mesl-

DG methods are compatible with unstructured meshes containing different types
of elements (tetrahedra, hexahedra most common, but also prisms and pyramids).

Figures courtesy of Pointwise Inc (https://www.pointwise.com).

) Chan (RicoCAAM) Entropy stable DG oj/18 342



First order

Second order

Fourth order

Eighth order




Why high order? Low numerical dissipation

2nd, 4th, and 16th order Taylor-Green (top), 8th order Kelvin-Helmholtz (bottom).

Beck, Gassner (2012). Numerical Simulation of the Taylor-Green Vortex at Re=1600 with the Discontinuous Galerkin
Spectral Element Method for well-resolved and underresolved scenarios

Peraire, Persson (2010). High-Order Discontinuous Galerkin Methods for CFD
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Stability of high order DG: linear vs nonlinear PDEs

Talk outline
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Stability of high order DG: linear vs nonlinear PDEs

2 Summation-by-parts and high order DG

w

Entropy stable formulations and flux differencing

4 Numerical experiments
Triangular and tetrahedral meshes
Quadrilateral and hexahedral meshes
Hybrid and non-conforming meshes
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Stability of high order DG: linear vs nonlinear PDEs

Basics of discontinuous Galerkin methods

Discontinuous Galerkin (DG) methods:
m High order accuracy, geometric flexibility.

m Weak continuity across faces.

m Continuous PDE (example: advection)

ou Gu_

FTRE My

m Local DG form with numerical flux v*: find u € PN (Dk) such that
8U 8“ N k
— 4+ — (U — =0, \ PY (D" .
/Dk<at+ax>¢+/m” (=)o o< PV (D¥)
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Stability of high order DG: linear vs nonlinear PDEs

Basics of discontinuous Galerkin methods

Discontinuous Galerkin (DG) methods:
m High order accuracy, geometric flexibility.

m Weak continuity across faces.

Discretizing in space yields system of ODEs Global

du mass matrix Mq
Mqg— = Au.
dt
DG mass matrix decouples across elements,

inter-element coupling only through A.
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Stability of high order DG: linear vs nonlinear PDEs

Basics of discontinuous Galerkin methods

Discontinuous Galerkin (DG) methods:
m High order accuracy, geometric flexibility.

m Weak continuity across faces.

Discretizing in space yields system of ODEs Global

du mass matrix Mq
Mqg— = Au.
dt
DG mass matrix decouples across elements,

inter-element coupling only through A.

[Goal: ensure ODE system is stable in time.j
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m Linear periodic advection on [—1,1]

ou @_

T
et =0 u=1)=u(), = llulliagg =0



Stability of high order DG: linear vs nonlinear PDEs

DG is semi-discretely energy stable for linear advection

m Linear periodic advection on [—1,1]

ou Ou

9 2
ar + x 0, u(=1) = u(1), == 9t HUHL2([71,1]) =0.

m DG numerical “penalty” flux, where [u] = u* —u and 7 > 0.

Z/Dk (au+x> de+;/aDk([[U]]nx+T[[u]])vdx: 0.
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Stability of high order DG: linear vs nonlinear PDEs

DG is semi-discretely energy stable for linear advection

m Linear periodic advection on [—1,1]

ou Ou

9 2
ar + x 0, u(=1) = u(1), == 9t HUHL2([71,1]) =0.

m DG numerical “penalty” flux, where [u] = u* —u and 7 > 0.

Z/Dk (au+x> de+;/aDk([[U]]nx+T[[u]])vdx: 0.

m Energy estimate: take v = u, chain rule in time, integrate by parts.

0 2 T 2
- < _ .
> g ol < }kizjwﬂuu ax
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Stability of high order DG: linear vs nonlinear PDEs

Energy conservative vs. energy stable DG methods

m Energy estimate implies that ||u|| is non-increasing for 7 > 0.
m Energy conservative (non-dissipative) “central” flux when 7 = 0.

m Energy stable (dissipative) “Lax-Friedrichs” flux when 7 = 1.
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0.2 0.2
0 b a Al nﬂmnn o Ao 0 A A
Vrv“qvv ,Iw u“ UA'LLA4 v
-0.2 -0.2
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
(a) Energy conservative (1 = 0) (b) Energy stable (7 = 1)
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Stability of high order DG: linear vs nonlinear PDEs

Generalization to nonlinear problems: entropy stability

m Generalizes energy stability to nonlinear systems of conservation laws
(Burgers', shallow water, compressible Euler, MHD).

ou  Of(u)

T Tox %

m Continuous entropy inequality: given a convex entropy function S(u)
and “entropy potential” ¥ (u),

du  Of(u) dS
T P = = —
/Q Y (815 + Ox > 0 "' u

RS SRR

m Proof of entropy inequality relies on chain rule, integration by parts.
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Stability of high order DG: linear vs nonlinear PDEs

Why are discretizations of nonlinear PDEs unstable?

Time = 0.251635 Time = 0.251635
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(a) Exact solution (b) 8th order DG

m Burgers' equation: f(u) = u?/2. How to compute %f(u)?

E‘FEK—O, UEP(D), UgP(D)

m Differentiating L? projection Py + inexact quadrature: no chain rule.

ou 10 5 B 1 0Py u? Ou
\/Dk<8t+28XPNU>VdX—O, 5 8X #PN<U8X>
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Stability of high order DG: linear vs nonlinear PDEs

Why are discretizations of nonlinear PDEs unstable?

Time = 0.499675 Time = 0.499675
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(a) Exact solution (b) 8th order DG

m Burgers' equation: f(u) = u?/2. How to compute a%f(u)?

E‘FEK—O, UEP(D), UgP(D)

m Differentiating L? projection Py + inexact quadrature: no chain rule.

ou 10 5 B 1 0Py u? Ou
\/Dk<8t+28XPNU>VdX—O, 5 8X #PN<U8X>
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Stability of high order DG: linear vs nonlinear PDEs

Why are discretizations of nonlinear PDEs unstable?

Time = 0.751309 Time = 0.751309
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(a) Exact solution (b) 8th order DG

m Burgers' equation: f(u) = u?/2. How to compute a%f(u)?

E‘FEK—O, UEP(D), UgP(D)

m Differentiating L? projection Py + inexact quadrature: no chain rule.

ou 10 5 B 1 0Py u? Ou
\/Dk<8t+28XPNU>VdX—O, 5 8X #PN<U8X>
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Stability of high order DG: linear vs nonlinear PDEs

Why are discretizations of nonlinear PDEs unstable?

Time = 1.067650 Time = 1.067650
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(a) Exact solution (b) 8th order DG

m Burgers' equation: f(u) = u?/2. How to compute a%f(u)?
ou 10u?
_ -7 PN Dk 2 PN Dk )
5 T O uePuDY), ut g PT(DY)

m Differentiating L? projection Py + inexact quadrature: no chain rule.

ou 10 5 B 1 0Py u? Ou
\/Dk<8t+28XPNU>VdX—O, 5 8X #PN<U6X>
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Stability of high order DG: linear vs nonlinear PDEs

Tradeoff between high order accuracy vs stability

m Asymptotic stability for smooth solutions (not shocks or turbulence!)

Under-resolved solutions: turbulence (inviscid Taylor-Green vortex).

Figures courtesy of Gregor Gassner, T. Warburton, Coastal Inlets Research Program (CIRP), “Man on Wire” (2008).
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Stability of high order DG: linear vs nonlinear PDEs

Tradeoff between high order accuracy vs stability

m Asymptotic stability for smooth solutions (not shocks or turbulence!)

tho: (0.600,5.543)  sqiRD 1.0 Ux20 nu00001 mach2 Re 20000

N=6 K=2051 df=109e-004 fime 1417 504.17 GFLOPs

Under-resolved solutions: shock waves.

Figures courtesy of Gregor Gassner, T. Warburton, Coastal Inlets Research Program (CIRP), “Man on Wire” (2008).
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Stability of high order DG: linear vs nonlinear PDEs

Tradeoff between high order accuracy vs stability

m Asymptotic stability for smooth solutions (not shocks or turbulence!)

m Common fix: stabilize by regularizing (limiters, filters, art. viscosity).
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a. Unlimited b. Limited

Slope limiting for a finite volume method.

Figures courtesy of Gregor Gassner, T. Warburton, Coastal Inlets Research Program (CIRP), “Man on Wire” (2008).
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Stability of high order DG: linear vs nonlinear PDEs

Tradeoff between high order accuracy vs stability

m Asymptotic stability for smooth solutions (not shocks or turbulence!)

m Common fix: stabilize by regularizing (limiters, filters, art. viscosity).
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Figures courtesy of Gregor Gassner, T. Warburton, Coastal Inlets Research Program (CIRP), “Man on Wire” (2008).
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Stability of high order DG: linear vs nonlinear PDEs

Tradeoff between high order accuracy vs stability

m Asymptotic stability for smooth solutions (not shocks or turbulence!)

m Common fix: stabilize by regularizing (limiters, filters, art. viscosity).
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Figures courtesy of Gregor Gassner, T. Warburton, Coastal Inlets Research Program (CIRP), “Man on Wire” (2008).
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Summation-by-parts and high order DG

Nodal DG and summation-by-parts (SBP) in 1D

e 9%
ox 0

T=T;

m Gauss-Legendre-Lobatto (GLL) quadrature 4+ nodal basis.

m Mimic integration by parts algebraically using differentiation matrix
D, diagonal (lumped) mass matrix M, and boundary matrix B

Q=B-Q', Q =MD, M diagonal.

Gassner (2013). A skew-symmetric DG-SEM discretization and its relation to SBP-SAT finite difference methods.
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Summation-by-parts and high order DG

Revisiting Burgers' equation: stable split formulations

m Rewrite Burgers' equation in split form
ou n 1 [0u? n ou 0
—+-|—=—+u—) =0
ot 3\ Ox Ox
m SBP discretization of split formulation
f‘*
du 1 .0

- 2 : -1 * *
dt+3(D(u)+d1ag(u)Du)+M Bf* =0, "=

fy
m Semi-discrete stability: multiply by u” M, note Q = MD. Use that
diagonal matrices commute + SBP to eliminate volume terms

d 1
uTMd—Lt' +3 (uTQu2 + uTMdiag(u)Du> +u’BF =0.
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Revisiting Burgers' equation: stable split formulations

m Rewrite Burgers' equation in split form
ou n 1 [0u? n ou 0
—+-|—=—+u—) =0
ot 3\ Ox Ox
m SBP discretization of split formulation
f‘*
du 1 .0

- 2 : -1 * *
dt+3(D(u)+d1ag(u)Du)+M Bf* =0, "=

fy
m Semi-discrete stability: multiply by u” M, note Q = MD. Use that
diagonal matrices commute + SBP to eliminate volume terms

1
"TM?TZ +3 (47 Qu + uT Mdivg (u)Du) + uTBF* = 0.
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Revisiting Burgers' equation: stable split formulations
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Summation-by-parts and high order DG

Revisiting Burgers' equation: stable split formulations

m Rewrite Burgers' equation in split form
ou n 1 [0u? n ou 0
—+-|—=—+u—) =0
ot 3\ Ox Ox
m SBP discretization of split formulation
f‘*
du 1 .0

- 2 : -1 * *
dt+3(D(u)+d1ag(u)Du)+M Bf* =0, "=

fy
m Semi-discrete stability: multiply by u” M, note Q = MD. Use that
diagonal matrices commute + SBP to eliminate volume terms

uTMd—u + E (uTQu2 + (u2)T Qu) +u'Bff =0.

dt 3
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Revisiting Burgers' equation: stable split formulations

m Rewrite Burgers' equation in split form
ou n 1 [0u? n ou 0
—+-|—=—+u—) =0
ot 3\ Ox Ox
m SBP discretization of split formulation
f‘*
du 1 .0

- 2 : -1 * *
dt+3(D(u)+d1ag(u)Du)+M Bf* =0, "=

fy
m Semi-discrete stability: multiply by u” M, note Q = MD. Use that
diagonal matrices commute + SBP to eliminate volume terms
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Summation-by-parts and high order DG

Revisiting Burgers' equation: stable split formulations

m Rewrite Burgers' equation in split form
ou n 1 [0u? n ou 0
—+-|—=—+u—) =0
ot 3\ Ox Ox
m SBP discretization of split formulation
f‘*
du 1 .0

- 2 : -1 * *
dt+3(D(u)+d1ag(u)Du)+M Bf* =0, "=

fy
m Semi-discrete stability: multiply by u” M, note Q = MD. Use that
diagonal matrices commute + SBP to eliminate volume terms

IV LR WA TS e T Tpf _
UMdt+3<u Bu uQu+(u) Qu)+u Bf* =0.
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Summation-by-parts and high order DG

Revisiting Burgers' equation: stable split formulations

m Rewrite Burgers' equation in split form
ou n 1 [0u? n ou 0
—+-|—=—+u—) =0
ot 3\ Ox Ox
m SBP discretization of split formulation
f‘*
du 1 .0

- 2 : -1 * *
dt+3(D(u)+d1ag(u)Du)+M Bf* =0, "=

fy
m Semi-discrete stability: multiply by u” M, note Q = MD. Use that
diagonal matrices commute + SBP to eliminate volume terms

uTMd—" +u'B (1

3

" u2> +u’Bff=0.
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Summation-by-parts and high order DG

Revisiting Burgers' equation: stable split formulations

m Rewrite Burgers' equation in split form
ou n 1 [0u? n ou 0
—+-|—=—+u—) =0
ot 3\ Ox Ox
m SBP discretization of split formulation
f‘*
du 1 .0

- 2 : -1 * *
dt+3(D(u)+d1ag(u)Du)+M Bf* =0, "=

fy
m Semi-discrete stability: multiply by u” M, note Q = MD. Use that
diagonal matrices commute + SBP to eliminate volume terms

1d

- T — . *
& (u Mu) 0, (for appropriate ™).
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(a) GLL collocation

m Current: build SBP matrices using quadrature with boundary nodes.

Carpenter et al. (2014), Gassner, Winters, and Kopriva (2016), Hicken et al. (2016), Crean et al. (2018)



Summation-by-parts and high order DG

Current entropy stable SBP discretizations

(a) GLL collocation (b) Coupling for Gauss nodes

m Current: build SBP matrices using quadrature with boundary nodes.

m Gauss quadrature: more accurate but expensive coupling conditions.

Carpenter et al. (2014), Gassner, Winters, and Kopriva (2016), Hicken et al. (2016), Crean et al. (2018)
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Summation-by-parts and high order DG

Current entropy stable SBP discretizations

(a) GLL collocation (b) Coupling for Gauss nodes (c) Nodes vs quadrature

m Current: build SBP matrices using quadrature with boundary nodes.
m Gauss quadrature: more accurate but expensive coupling conditions.

m Tetrahedra, wedges, pyramids? Non-polynomials? Over-integration?

Carpenter et al. (2014), Gassner, Winters, and Kopriva (2016), Hicken et al. (2016), Crean et al. (2018)
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Summation-by-parts and high order DG

Current entropy stable SBP discretizations

(a) GLL collocation (b) Coupling for Gauss nodes (c) Nodes vs quadrature

m Current: build SBP matrices using quadrature with boundary nodes.
m Gauss quadrature: more accurate but expensive coupling conditions.

m Tetrahedra, wedges, pyramids? Non-polynomials? Over-integration?

Goal: entropy stable high order DG with compact coupling using
arbitrary basis functions and general quadrature rules.

Carpenter et al. (2014), Gassner, Winters, and Kopriva (2016), Hicken et al. (2016), Crean et al. (2018)
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Summation-by-parts and high order DG

Polynomial bases and quadrature-based matrices

o
, o0
o
%0
00

Polynomials

o .
o o Surface
0o quadrature

m Assume degree 2V volume, surface quadratures (x7, w?), (xf, wf),
and basis ¢1,...,¢n,. Define interpolation matrices V4, V¢

(Vo) = &i(x7)s (V) = &5(x]).
m Introduce quadrature-based L? projection and lifting matrices
P,=M'vIw, Lr=M1v]wy,
W = diag (w?), W¢ = diag (Wf> .

J. Chan (Rice CAAM) Entropy stable DG 9/24/18 14 /42



Summation-by-parts and high order DG

Quadrature-based “finite difference” matrices

E=V;P,

o /’/—\’ Surface
Polynomials

quadrature P V quadrature
f
‘ 3 1 > °
o o oL o
AN % § oo

m Matrix D),: evaluates derivative of L2 projection Py at x{.

D; =V,D'P,, D' exactly differentiates polynomials.
m Generalized summation-by-parts: let Q; = WD; and E = V¢P,

Qi+ Q" =ETBE, B; = Wqdiag (n;)

OPnu 8PNV_ ~
5 O v—i—/ﬁu B —/85(PNU)(PNV)n,.

J. Chan (Rice CAAM) Entropy stable DG 9/24/18
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Summation-by-parts and high order DG

A “decoupled” block SBP operator

m Quadrature may not contain boundary points: complicated interface
terms for coupling between neighboring elements or imposing BCs.

m On DX with unit normal vector n: approx. derivative w.r.t x;.

i Q- iE"B;E lETB;
Qy = _iB.E ig. |’
2D 2 Di
m If Q; satisfies a generalized SBP property, ;v satisfies the SBP
property

; i\T ; of og
! ! =B |~ — f—= = fgn; |
QN + (Q/\/) N /Dk axl_g + Bx; / gn

J. Chan (Rice CAAM) Entropy stable DG 9/24/18 16 / 42



Summation-by-parts and high order DG

Decoupled SBP operators add boundary corrections

No boundary correction

Boundary correction

— — — Exact derivative

1 1

[ ] D;V produces a high order approximation of f% at x = [xq,xf].
og .
f& ~ [ P, Lf } diag (f) Dng, fi.gi=f(xi),g(xi)

m Reduces to traditional SBP operator under appropriate quadrature.

m Equivalent to a skew-symmetric variational problem for u(x) ~ f%.

OPng (fv + Pn(fv))
/Dk u(x)v(x) = Dkf 8>A<I V+/6Dk (g—PNg)—2N )
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Entropy stable formulations and flux differencing

Burgers' equation: decoupled SBP and energy stability

m Revisit split form of Burgers' equation:
ou 1(02 0w\ |
ot 3\ Ox ox)
m “Modal" DG method: let up(x) = > u;¢(x). Find u such that

u = |: Vq :| l/), f‘* — f*(u4>7 U) = numerica| ﬂux
V¢

M

di 1]V
dt 3

-
Vj ] (Qn (u2) + diag (u) Qnu) + vIBf=o.

m Formulation is energy stable for arbitrary volume quadratures

d ... 0 5
SiTmu=2 <
at YT ot lunll” <0
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(a) Energy conservative (1 = 0)
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Entropy stable formulations and flux differencing

Entropy conservative finite volume fluxes

m Tadmor's entropy conservative numerical flux:
fs(u,u) = f(u), (consistency)
fs(u,v)="fs(v,u), (symmetry)

(vi —vgr) F(uL,ug) =1, — Ur, (conservation).

Tadmor, Eitan (1987). The numerical viscosity of entropy stable schemes for systems of conservation laws. I.
J. Chan (Rice CAAM) Entropy stable DG 9/24/18
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Entropy stable formulations and flux differencing

Entropy conservative finite volume fluxes

m Tadmor's entropy conservative numerical flux:

fs(u,u)=f(u), (consistency)
fs(u,v)="fs(v,u), (symmetry)

(vi —vgr) F(uL,ug) =1, — Ur, (conservation).
m Example: entropy conservative flux for Burgers' equation

1

fs(uL, ug) = 6 (uf + uLug + uR).

Tadmor, Eitan (1987). The numerical viscosity of entropy stable schemes for systems of conservation laws. I.
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Entropy stable formulations and flux differencing

Entropy conservative finite volume fluxes

m Tadmor's entropy conservative numerical flux:
fs(u,u) = f(u), (consistency)
fs(u,v)="fs(v,u), (symmetry)

(vi —vgr) F(uL,ug) =1, — Ur, (conservation).
m Example: entropy conservative flux for Burgers' equation

1

fs(ur, ug) = 5 ( E—i— upuR + u,%) )

m Flux differencing: use finite volume fluxes to evaluate derivatives.

Tadmor, Eitan (1987). The numerical viscosity of entropy stable schemes for systems of conservation laws. I.
J. Chan (Rice CAAM) Entropy stable DG 9/24/18
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m Entropy conservative flux for Burgers' equation

fs(up, ug) = (uf + upup + u,%) .

|

m Flux differencing: let u; = u(x), ugr = u(y)

OF(w) s (u(x). u(y))
o =2 oy

y=x



Entropy stable formulations and flux differencing

Flux differencing: recovering split formulations

m Entropy conservative flux for Burgers' equation

1

fs(ul_, UR) = 6 (UE + upup + U,z?) .

m Flux differencing: let u; = u(x), ug = u(y)

of (u) Ofs (u(x), u(y))
ox =2 Ox

y=x

m Recovering the Burgers' split formulation

fo(u(x), () = 3 () + a(x)u(y) + u(y)?)
V)| 108 10w 10

1,
0x yex 3 0x 3

J. Chan (Rice CAAM) Entropy stable DG 9/24/18
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Entropy stable formulations and flux differencing

Flux differencing: beyond split formulations

m Fluxes do not necessarily correspond to split formulations!

m Example: entropy conservative flux for 1D compressible Euler

fe (ur, ug) = {p}}'* {u})

L0 S
= sty T A

Pl = (2(7 e WH) e

m Rational functions: logarithmic mean and “inverse temperature” (3

fé(uL, ug)

log _ up — ur _ ﬁ
Hul log u; — log ug’ g 2p

Chandreshekar (2013), Kinetic energy preserving and entropy stable FV schemes for comp. Euler and NS equations.
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Entropy stable formulations and flux differencing

Flux differencing: implementational details

m Define Fg by evaluating fs at all combinations of quadrature points
AT
(Fs); = Fs(u(x),ulx),  x=[x%x"] .

m Replace 8% with the decoupled SBP operator Dy + polynomial L?
projection and lifting matrices.

0% (4, u(y))
Ox

— [ Pq Lf ]diag(2DNF5).
y=x

m Simpler Hadamard product reformulation: evaluate Fg on-the-fly

diag(2DNF5) = (2DN o Fs) 1.

J. Chan (Rice CAAM) Entropy stable DG 9/24/18 23 /42



Entropy stable formulations and flux differencing

Flux differencing circumvents the chain rule

m Test with entropy variables v, integrate, and use SBP property:
VT (2QuoFs)1=7" ((By+Qu-Qf)oFs) 1

m Only boundary terms appear in final estimate; volume terms become
boundary terms using properties of (Fs); = fs (u;, u))

VT ((Qn—Qf) o Fs)1=v"(QuoFs)1-17 (QuoFs)v
=> (Qn); (vi —v))" fs(a, ).
ij

J. Chan (Rice CAAM) Entropy stable DG 9/24/18 24 /42



Entropy stable formulations and flux differencing

Flux differencing circumvents the chain rule

m Test with entropy variables v, integrate, and use SBP property:
v 2QnoFs)1=v" ((BN Q- o,@) o Fs) 1.
m Only boundary terms appear in final estimate; volume terms become
boundary terms using properties of (Fs); = fs (u;, u))
VT ((QN - o;) o F5> 1=v (QuoFs)1—17 (QuoFs)v
=D (Qu)y (w(@) — ().

i7j
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Entropy stable formulations and flux differencing

Flux differencing circumvents the chain rule

m Test with entropy variables v, integrate, and use SBP property:
VT (2QuoFs)1=7" ((By+Qu-Qf)oFs) 1

m Only boundary terms appear in final estimate; volume terms become
boundary terms using properties of (Fs); = fs (u;, u))

VT ((Qn—Qf) o Fs)1=v"(QuoFs)1-17 (QuoFs)v
=17Qny — ¢ Qnl =17 Quy
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Entropy stable formulations and flux differencing

Flux differencing circumvents the chain rule

m Test with entropy variables v, integrate, and use SBP property:
VT (2QuoFs)1=7" ((By+Qu-Qf)oFs) 1

m Only boundary terms appear in final estimate; volume terms become
boundary terms using properties of (Fs); = fs (u;, u))

VT ((QN _ o;) o F5> 1=v (QuoFs)1—17 (QuoFs)v
—17 (B,V - QL) = 1T By,
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Entropy stable formulations and flux differencing

Flux differencing circumvents the chain rule

m Test with entropy variables v, integrate, and use SBP property:
VT (2QuoFs)1=7" ((By+Qu-Qf)oFs) 1

m Only boundary terms appear in final estimate; volume terms become
boundary terms using properties of (Fs); = fs (u;, u))

VT ((QN _ o;) o F5> 1=v (QuoFs)1—17 (QuoFs)v
—17 (B,V - QL) = 1T By,

m Proof uses (v; — VJ-)T fs(uj,uj)=1(u;)—1(u;): requires entropy
variables v to be a function of conservative variables u.

J. Chan (Rice CAAM) Entropy stable DG 9/24/18 24 /42



Entropy stable formulations and flux differencing

Modifying the conservative variables

m Conservative variables vy, and test functions are polynomial, but the
entropy variables v(uy) ¢ P!

m Evaluate flux fs using modified conservative variables u

u=u(Pyv(up)).
m If v(u) is an invertible mapping, this choice of u ensures that

v =v(u) = Pyv(uy) € PV.

m Local conservation w.r.t. a generalized Lax-Wendroff theorem.

Shi and Shu (2017). On local conservation of numerical methods for conservation laws.
J. Chan (Rice CAAM) Entropy stable DG 9/24/18 25 /42



Entropy stable formulations and flux differencing

[llustration of main steps of ESDG

A B| _[F¢ F11,
-B" c| |F¥ FI

Qj, Fs

m Interpolate projected entropy variables Pyv(u) to all nodes.

J. Chan (Rice CAAM) Entropy stable DG 9/24/18 26 /42



Entropy stable formulations and flux differencing

[llustration of main steps of ESDG

m Interpolate projected entropy variables Pyv(u) to all nodes.

m Compute interactions fs(u;, ugr) between volume quadrature nodes.
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Entropy stable formulations and flux differencing

[llustration of main steps of ESDG

m Interpolate projected entropy variables Pyv(u) to all nodes.
m Compute interactions fs(u;, ugr) between volume quadrature nodes.

m Compute interactions between surface nodes of neighboring elements
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Entropy stable formulations and flux differencing

[llustration of main steps of ESDG

Interpolate projected entropy variables Pyv(u) to all nodes.
Compute interactions fs(uy, ur) between volume quadrature nodes.

Compute interactions between surface nodes of neighboring elements

Compute interactions between volume and surface nodes.

J. Chan (Rice CAAM) Entropy stable DG 9/24/18 26 /42



Entropy stable formulations and flux differencing

A general entropy conservative DG formulation

Theorem (Chan 2018)
Let up(x) =3 u;¢j(x) and u = u(Pnv). Let u locally solve

= d T
du 74 i i i (u
"”dﬁz{v?] (2Qivo F5) 1+ V] B, (F5(a".a) — F(@) =o.

i=1

Assuming continuity in time, up(x) satisfies the quadrature form of
0S(u -
/ Gun) +Z/ (Puv)T Fi(a) — 1/1,-(u)> n; = 0.
Q

m Can modify interface flux (e.g. Lax-Friedrichs or matrix dissipation) to
change the entropy equality to an entropy inequality.

Winters, Derigs, Gassner, and Walch (2017). A uniquely defined entropy stable matrix dissipation operator for high Mach
number ideal MHD and compressible Euler simulations.

J. Chan (Rice CAAM) Entropy stable DG 9/24/18 27 /42



1 Stability of high order DG: linear vs nonlinear PDEs
2 Summation-by-parts and high order DG
3 Entropy stable formulations and flux differencing

4 Numerical experiments
= Triangular and tetrahedral meshes
= Quadrilateral and hexahedral meshes
= Hybrid and non-conforming meshes



1 Stability of high order DG: linear vs nonlinear PDEs
2 Summation-by-parts and high order DG
3 Entropy stable formulations and flux differencing

4 Numerical experiments
Triangular and tetrahedral meshes
Quadrilateral and hexahedral meshes
Hybrid and non-conforming meshes



Numerical experiments

Conservation of entropy: semi-discrete vs. fully discrete

AS(u) = |S(u(x,t)) — S(u(x,0))| — 0 as as At — 0.

100 4 P —
3 ==== Density, EC
35 - = Velocity, EG
L oponDOBEO 5000D0DDDDIIOODODD: ' 5 ! —— Density, LF
102 2poDOBIOODDIR 3t Velocity, LF |1

F pp00D
£ po0 0
pad®
o

107 g 2
A I i
BE 1.5
10 1
P ——EG, GFL = 0.500
- - EC, CFL =0.250 05l
. EC, CFL = 0.125 A
o
LF, CFL=0.125 o5 i
1o010° ’
05 1 15 2 1 . | |
Time -1 0.5 0 0.5 1
(a) AS(u) for various At (b) p(x), u(x) (N =4,K = 16)

Solution and change in entropy AS(u) for entropy conservative (EC) and
Lax-Friedrichs (LF) fluxes (using GQ-(N + 2) quadrature).

J. Chan (Rice CAAM) Entropy stable DG 9/24/18
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m Circles are cell averages.
m CFL of .125 used for both GLL-(N + 1)and GQ-(N + 2).

1.2
---Density
- -Pressure
1 } nwfwlwl 1Ce
0.8 -
0.6
0.4 - |I
N
0.2~ l
W
0 1 1 1 1 1 1 1 1 I
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

N =4,K =32, (N +1) point Gauss-Lobatto-Legendre quadrature.




m Circles are cell averages.
m CFL of .125 used for both GLL-(N + 1)and GQ-(N + 2).

1.2
---Density
- -Pressure
1 nwfwlwl 1ce
0.8 -
0.6
0.4
1
b 4
0.2~ ‘
0 1 1 1 1 1 1 1 1 I
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

N =4,K =32, (N +2) point Gauss quadrature.




m GQ-(N + 2) does need a smaller CFL (.05 vs .125) for stability.

---Density
—Reference

2 -
i
1h M
i
0 1 1 1 1 1 1 1 1 1 ]
-5 -4 -3 -2 -1 0 1 2 3 4 5

N =4, K =40, CFL = .05, (N 4 1) point Gauss-Lobatto-Legendre quadrature.



m GQ-(N + 2) does need a smaller CFL (.05 vs .125) for stability.

---Density
—Reference

| I 1 1 | I I 1 1 |

% -4 -3 2 -1 0 1 2 3 4 5
N =4 K =40, CFL = .05, (N + 2) point Gauss quadrature.




1 Stability of high order DG: linear vs nonlinear PDEs
2 Summation-by-parts and high order DG
3 Entropy stable formulations and flux differencing

4 Numerical experiments
= Triangular and tetrahedral meshes
Quadrilateral and hexahedral meshes
Hybrid and non-conforming meshes



Numerical experiments  Triangular and tetrahedral meshes

Smooth isentropic vortex and curved meshes in 2D /3D

(a) 2D triangular mesh (b) 3D tetrahedral mesh

Figure: Example of 2D and 3D meshes used for convergence experiments.

m Entropy stability: needs discrete geometric conservation law (GCL).
m Generalized “weight-adjusted” mass lumping for curved meshes.

m Modify u = u(v), v= 5,1\‘,v(uh) using weight-adjusted projection 5,’\‘,

Visbal and Gaitonde (2002). On the Use of Higher-Order Finite-Difference Schemes on Curvilinear and Deforming Meshes.
Kopriva (2006). Metric identities and the discontinuous spectral element method on curvilinear meshes.

Chan, Hewett, and Warburton (2016). Weight-adjusted discontinuous Galerkin methods: curvilinear meshes.
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Numerical experiments  Triangular and tetrahedral meshes

Smooth isentropic vortex and curved meshes in 2D /3D

S
5]
Ay
5 ——— Affine ——— Affine
— — — Curved 5 — — — Curved
1075 L T T ] | I
10795 10° 10° 1005
Mesh size h Mesh size h
(a) 2D results (b) 3D results

L2 errors for 2D/3D isentropic vortex at T =5 on affine, curved meshes.

Visbal and Gaitonde (2002). On the Use of Higher-Order Finite-Difference Schemes on Curvilinear and Deforming Meshes.
Kopriva (2006). Metric identities and the discontinuous spectral element method on curvilinear meshes.
Chan, Hewett, and Warburton (2016). Weight-adjusted discontinuous Galerkin methods: curvilinear meshes.
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_ Triangular and tetrahedral meshes
2D Riemann problem

m Uniform 64 x 64 mesh: N = 3, CFL .125, Lax-Friedrichs stabilization.
m No limiting or artificial viscosity required to maintain stability!
m Periodic on larger domain (“natural” boundary conditions unstable).

Jis

e %
14

J18

() Q=[-1,1]° (b) Q =[5, .5]°, 32 x 32 elements

I Chan (RiccCAAM) Entropy stable DG S ER



Triangular and tetrahedral meshes

Figure: Isocontours of z-vorticity for Taylor-Green at t = 0,10 seconds.

m Simple turbulence-like behavior (generation of small scales).

m Inviscid Taylor-Green: tests robustness w.r.t. under-resolved solutions.

https://how4.cenaero.be/content/bs1-dns-taylor-green-vortex-re1600.
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Numerical experiments  Triangular and tetrahedral meshes

Taylor-Green vortex: kinetic energy dissipation rate

— Affine
014 |- - — — Curved |
—.—.- Gassner et al.
Beck et al. (viscous)
.01 Spectral (viscous)

S
I .006
.002
-.002 I \ I | I \ ]
0 2 4 6 8 10 12 14
Time t
Figure: Evolution of kinetic energy x(t) and kinetic energy dissipation rate —%

for N =3, h = /8, CFL = .25 on affine and curved meshes.
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1 Stability of high order DG: linear vs nonlinear PDEs
2 Summation-by-parts and high order DG
3 Entropy stable formulations and flux differencing

4 Numerical experiments
Triangular and tetrahedral meshes
~ Quadrilateral and hexahedral meshes
Hybrid and non-conforming meshes



Numerical experiments Quaderilateral and hexahedral meshes

Entropy stable Gauss collocation: main steps

o o o o
(e] (¢] [e] [e]
A B] [F¢ F¢
o
-BT c| |FY Ff
(e] (e] [e] [e]
Q) Fs
o o o o

m (N + 1)-point Gauss quadrature reduces to a collocation scheme.
m Advantage over tetrahedral elements: tensor product structure.

m Reduces computational costs from O(N®) to O(N*) in 3D.

J. Chan (Rice CAAM) Entropy stable DG 9/24/18
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Numerical experiments Quaderilateral and hexahedral meshes

Entropy stable Gauss collocation: main steps
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m (N + 1)-point Gauss quadrature reduces to a collocation scheme.
m Advantage over tetrahedral elements: tensor product structure.

m Reduces computational costs from O(N®) to O(N*) in 3D.
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Entropy stable Gauss collocation: main steps
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m (N + 1)-point Gauss quadrature reduces to a collocation scheme.
m Advantage over tetrahedral elements: tensor product structure.
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Numerical experiments Quaderilateral and hexahedral meshes

Entropy stable Gauss collocation: main steps

o
o

o o
o o o o
A B] [F¢ F¢
_BT c o Ffv Fff 1
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Q) Fs
% o o o

m (N + 1)-point Gauss quadrature reduces to a collocation scheme.
m Advantage over tetrahedral elements: tensor product structure.

m Reduces computational costs from O(N®) to O(N*) in 3D.
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Numerical experiments Quaderilateral and hexahedral meshes

Gauss quadrature improves errors on curved meshes

100 |
I e
i S S
515 e R L o
[ B L U\ VA VR V) . H“Q*r— £
i xiias ] 8 w0t |
I e
;%H iis ! “" [ FHEHE
51 |HE| |ma e (as \ R U] [ TR ] IR
10710

Mesh size h

Figure: L2 errors for the 2D isentropic vortex at time T =5 for degree
N =2,...,7 GLL and Gauss collocation schemes (similar behavior in 3D).
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Numerical experiments Quaderilateral and hexahedral meshes

Gauss quadrature improves errors on curved meshes
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Figure: L2 errors for the 2D isentropic vortex at time T =5 for degree
N =2,...,7 GLL and Gauss collocation schemes (similar behavior in 3D).
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Numerical experiments Quaderilateral and hexahedral meshes

Gauss quadrature improves errors on curved meshes
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Figure: L2 errors for the 2D isentropic vortex at time T =5 for degree
N =2,...,7 GLL and Gauss collocation schemes (similar behavior in 3D).
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Numerical experiments Quadrilateral and hexahedral meshes

Shock vortex interaction

(a) Entropy conservative flux, T = .3 (b) Entropy conservative flux, T =.7

Figure: Shock vortex interaction problem using high order entropy stable Gauss
collocation schemes with N =4, h = 1/100.

Winters, Derigs, Gassner, and Walch (2017). A uniquely defined entropy stable matrix dissipation operator for high Mach
number ideal MHD and compressible Euler simulations.
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Numerical experiments Quadrilateral and hexahedral meshes

Shock vortex interaction

(a) Lax-Friedrichs flux, T = .3 (b) Lax-Friedrichs flux, T =.7

Figure: Shock vortex interaction problem using high order entropy stable Gauss
collocation schemes with N = 4, h = 1/100.

Winters, Derigs, Gassner, and Walch (2017). A uniquely defined entropy stable matrix dissipation operator for high Mach
number ideal MHD and compressible Euler simulations.
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Numerical experiments Quadrilateral and hexahedral meshes

Shock vortex interaction

(a) Matrix dissipation flux, T = .3 (b) Matrix dissipation flux, T =.7

Figure: Shock vortex interaction problem using high order entropy stable Gauss
collocation schemes with N =4, h = 1/100.

Winters, Derigs, Gassner, and Walch (2017). A uniquely defined entropy stable matrix dissipation operator for high Mach
number ideal MHD and compressible Euler simulations.
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(a) Matrix dissipation flux, T = .3 ) Matrix dissipation flux, T =.7

Figure: Shock vortex interaction problem using high order entropy stable Gauss
collocation schemes with N =4, h = 1/100.

Winters, Derigs, Gassner, and Walch (2017). A uniquely defined entropy stable matrix dissipation operator for high Mach
number ideal MHD and compressible Euler simulations.



1 Stability of high order DG: linear vs nonlinear PDEs
2 Summation-by-parts and high order DG
3 Entropy stable formulations and flux differencing

4 Numerical experiments
Triangular and tetrahedral meshes
Quadrilateral and hexahedral meshes
= Hybrid and non-conforming meshes



Numerical experiments Hybrid and non-conforming meshes

Mixed quadrilateral-triangle meshes

O O
(a) No SBP (tri. under-integrated) (b) No SBP (quad. under-integrated)

m SBP property requires sufficiently accurate quadrature.

m Skew-symmetric formulation relaxes requirements on quadrature
accuracy for entropy stability:

~ d T
MilltlJrZ[ 5? ] ((QN - (Q’}v)T> oFé) 1+ V]B:fi(ut,u)=0.

i=1
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Numerical experiments Hybrid and non-conforming meshes

Numerical results: mixed triangle-quadrilateral meshes

100 |- 1
o
o
“ -2 |
5 10
o
~ g - —0— GLL-GLL
—4 | - O- GLL-Gauss
10 —A— Gauss-Gauss
| T
101 10705
Mesh size h
(a) Coarse hybrid mesh (b) Convergence for N =1,2,3,4

The skew-symmetric formulation guarantees entropy stability for all
combinations of GLL and Gauss volume and surface quadratures.
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Numerical experiments Hybrid and non-conforming meshes

Meshes with non-conforming interfaces

) ) O @) T ©) @) o O
o o o oy o o o o
o O o O o O o O
o O o O o O o O
(a) Conforming surface nodes (b) Non-conforming surface nodes

m Volume/surface nodes interact through fs(uj, u;) and interpolation.
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Numerical experiments Hybrid and non-conforming meshes

Meshes with non-conforming interfaces

o O o O
; Q-Q ETB;
© o6 o o E 7_—, ~B,E B,E,
—_ ~
o — —BjE,,
E,
modified skew operator Qg\,f(Q’,'V)T

m Volume/surface nodes interact through fs(uj, u;) and interpolation.

m Weakly couple volume nodes to non-conforming surface nodes by
adding conforming “mortar” (via additional blocks in Qp).

m Can reformulate as an entropy stable correction to standard mortar.
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Numerical experiments Hybrid and non-conforming meshes

Meshes with non-conforming interfaces
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modified skew operator Qg\,f(Q’,'V)T

m Volume/surface nodes interact through fs(uj, u;) and interpolation.

m Weakly couple volume nodes to non-conforming surface nodes by
adding conforming “mortar” (via additional blocks in Qp).

m Can reformulate as an entropy stable correction to standard mortar.
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Numerical experiments Hybrid and non-conforming meshes

Numerical results: non-conforming meshes
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(a) Coarse non-conforming mesh (b) Sub-optimal rates if under-integrated

The skew-symmetric formulation guarantees entropy stability for both GLL
and Gauss quadratures, but Gauss is more accurate.
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Numerical experiments Hybrid and non-conforming meshes

Summary and future work

m Entropy stable high order discontinuous Galerkin methods:
semi-discrete stability, improved robustness.

m Additional work required for strong shocks, positivity preservation.
m Current work: hybrid and non-conforming meshes, multi-GPU.

m This work is supported by DMS-1719818 and DMS-1712639.

Thank you! Questions?

Chan, Del Rey Fernandez, Carpenter (2018). Efficient entropy stable Gauss collocation methods.

Chan, Wilcox (2018). On discretely entropy stable weight-adjusted DG methods: curvilinear meshes.

Chan, Hewett, and Warburton (2016). Weight-adjusted discontinuous Galerkin methods: curvilinear meshes.

Chan (2017). On discretely entropy conservative and entropy stable discontinuous Galerkin methods.
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Numerical experiments Hybrid and non-conforming meshes

Over-integration is ineffective without L? projection

Density -~ Density
Velocity Velocity
| —Pressure —Pressure

(a) (N +1) points (b) (N + 4) points

Figure: Numerical results for the Sod shock tube for N = 4 and K = 32 elements.
Over-integrating by increasing the number of quadrature points does not improve
solution quality.
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Numerical experiments Hybrid and non-conforming meshes

On CFL restrictions

m For GLL-(N + 1) quadrature, u = u (Pyv) = u at GLL points.
m For GQ-(N +2), discrepancy between L? projection and interpolation.
m Still need positivity of thermodynamic quantities for stability!
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Numerical experiments Hybrid and non-conforming meshes

High order DG on many-core (GPU) architectures

Figure: NVIDIA Maxwell GM204 GPU: 16 cores, 4 SIMD clusters of 32 units.

m Thousands of processing units organized in synchronized groups.

Klockner, Warburton, Bridge, Hesthaven 2009, Nodal discontinuous Galerkin methods on graphics processors.
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Numerical experiments Hybrid and non-conforming meshes

High order DG on many-core (GPU) architectures

Thread block

Figure: Thread blocks process elements, threads process degrees of freedom.

m Thousands of processing units organized in synchronized groups.

Klockner, Warburton, Bridge, Hesthaven 2009, Nodal discontinuous Galerkin methods on graphics processors.
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Numerical experiments Hybrid and non-conforming meshes

High order DG on many-core (GPU) architectures

Thread block

Figure: Thread blocks process elements, threads process degrees of freedom.

m Thousands of processing units organized in synchronized groups.

m No free lunch: memory costs (accesses, transfer, latency, storage).

Klockner, Warburton, Bridge, Hesthaven 2009, Nodal discontinuous Galerkin methods on graphics processors.
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Numerical experiments Hybrid and non-conforming meshes

Implementing high order entropy stable DG on GPUs

m “FLOPS are free, but ..."
(bytes are expensive) / (memory is dear) / (postage is extra)

m Standard considerations: minimize CPU-GPU transfers, structured
data layouts, reduce global memory accesses, maximize data reuse.

m Arithmetic vs memory latency: need roughly O(10) operations per
byte of memory accessed (high arithmetic intensity).

m Standard mat-vec: only 1/10 — 1/2 FLOPS per byte!
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Numerical experiments Hybrid and non-conforming meshes

GPUs and flux differencing: when FLOPS are free

100 BIESDGSEM
I8 Standard
(@ MemCpy

80

runtime (ps per million DOFs)

4 5 6 7 8 9 10 11 12 13 14 15

N

m High arithmetic intensity: compute while waiting for global memory.
m On GPUs, extra operations don't increase runtime until N > 9!

Wintermeyer, Winters, Gassner, Warburton (2018). An entropy stable discontinuous Galerkin method for the shallow
water equations on curvilinear meshes with wet/dry fronts accelerated by GPUs.
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