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High order methods for time-dependent hyperbolic PDEs

Accurate resolution of
propagating waves and vortices.

High order: low numerical
dissipation and dispersion.

High order approximations:
more accurate per unknown.

Many-core architectures
(efficient explicit time-stepping).

Figures courtesy of T. Warburton, A. Modave.

�� ��Goal: address instability of high order methods!
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Fine linear approximation.�� ��Goal: address instability of high order methods!
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Coarse quadratic approximation.�� ��Goal: address instability of high order methods!
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Why are high order methods for nonlinear PDEs unstable?

(a) N = 7,K = 8 (aligned mesh) (b) N = 7,K = 9 (non-aligned mesh)

Burgers’ equation: f (u) = u2/2. How to compute ∂
∂x f (u)?

∂u

∂t
+

1

2

∂u2

∂x
= 0, u ∈ PN(Dk ), u2 6∈ PN(Dk ).

Differentiating L2 projection PN + inexact quadrature: no chain rule.∫
Dk

(
∂u

∂t
+

1

2

∂

∂x
PNu

2

)
v dx = 0,

1

2

∂PNu
2

∂x
6= PN

(
u
∂u

∂x

)
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Entropy stability for nonlinear conservation laws

Analogue of energy stability for nonlinear systems of conservation
laws (Burgers’, shallow water, compressible Euler, MHD).

∂u
∂t

+
∂f (u)

∂x
= 0.

Continuous entropy inequality: convex entropy function S(u) and
“entropy potential” ψ(u).∫

Ω
vT

(
∂u
∂t

+
∂f (u)

∂x

)
= 0, v =

∂S

∂u

=⇒
∫

Ω

∂S(u)

∂t
+
(
vT f (u)− ψ(u)

)∣∣∣1
−1
≤ 0.

Proof of entropy inequality relies on integration by parts, chain rule.
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Why discretely entropy stable (ES) schemes?

Robustness High order  
accuracy

Pa

Stabilization

Existing discrete stability
theory: regularization,
viscosity, TVD, etc.

Can result in a balancing act
between high order accuracy,
stability, and robustness.

Goal: aim for stability
independently of artificial
viscosity, limiters, and
quadrature accuracy.
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“Decoupled” summation by parts operators

Talk outline

1 “Decoupled” summation by parts operators

2 Entropy stable formulations and flux differencing

3 Numerical experiments: triangles and tetrahedra

4 Entropy stable Gauss collocation methods: preliminary results
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“Decoupled” summation by parts operators

Overview of entropy stable high order SBP schemes

(a) GLL collocation

(b) Gauss nodes coupling (c) Nodes vs cubature

Discrete entropy inequality for SBP schemes (e.g. GLL collocation).

GSBP (e.g. Gauss collocation): higher accuracy, but require
non-compact coupling conditions between neighboring elements.

Tetrahedra, prisms, pyramids, etc (over-integration, dense norms)?

Goals: entropy stability, compact coupling, arbitrary basis/quadrature.

Fisher, Carpenter, Nordström, Yamaleev, Swanson (2013), Fisher, Carpenter (2013), Gassner, Winters, and Kopriva
(2016), Wintermeyer et al. (2017), Chen and Shu (2017), Crean, Hicken, DCDR Fernandez, et al. (2018), and more . . .
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“Decoupled” summation by parts operators

Quadrature-based matrices for polynomial bases

Volume and surface quadratures (xq
i ,w

q
i ), (x f

i ,w
f
i ), exact for degree

2N polynomials. Define diagonal quadrature weight matrices

W = diag (wq) , Wf = diag
(
w f
)
.

Assume some polynomial basis φ1, . . . , φNp . Define the interpolation
matrices Vq,Vf

(Vq)ij = φj (x
q
i ), (Vf )ij = φj (x f

i ).

Introduce quadrature-based L2 projection and lifting matrices

Pq = M−1V T
q W , Lf = M−1V T

f Wf .

These matrices map to and from modal and quadrature spaces.
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“Decoupled” summation by parts operators

Quadrature-based differentiation matrices

Matrix D i
q: evaluates derivative of L2 projection at points xq.

D i
q = VqD iPq, D i = modal differentiation matrix.

Summation-by-parts involving L2 projection:

WD i
q +

(
WD i

q

)T
= (Vf Pq)T Wf diag (ni ) Vf Pq.

Equivalent to integration-by-parts + quadrature: for u, v ∈ L2
(
D̂
)

∫
D̂

∂PNu

∂xi
v +

∫
D̂
u
∂PNv

∂xi
=

∫
∂D̂

(PNu) (PNv) n̂i

Recovers GSBP, but entropy stable interface terms are expensive.
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“Decoupled” summation by parts operators

A “decoupled” block SBP operator

Approx. derivatives also using boundary traces (compact coupling).

On an element Dk with unit normal vector n: approximate ith
derivative (block matrix operating on volume + surface values).

D i
N =

[
D i

q − 1
2VqLf diag(ni )Vf Pq

1
2VqLf diag(ni )

−1
2diag(ni )Vf Pq

1
2diag(ni )

]
,

D i
N satisfies a summation-by-parts (SBP) property + D i

N1 = 0

Q i
N =

[
W

Wf

]
D i

N , BN =

[
0

Wf ni

]
,

Q i
N +

(
Q i

N

)T
= BN ∼

∫
Dk

∂f

∂xi
g + f

∂g

∂xi
=

∫
∂Dk

fgni .

Chen and Shu (2017). ES high order DG methods with suitable quadrature rules for hyperbolic conservation laws.
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“Decoupled” summation by parts operators

Differentiation using decoupled SBP operators

Note: D i
N is not a differentiation matrix on its own.

Pq,Lf , and D i
N produce a high order polynomial approximation of

f ∂g
∂x given data at quadrature points x = [xq, x f ].

f
∂g

∂x
≈
[

Pq Lf

]
diag (f ) DNg , fi , gi = f (xi ), g(xi ).

Equivalent to solving variational problem for u(x) ≈ f ∂g
∂x∫

Dk

u(x)v(x) =

∫
Dk

f
∂PNg

∂x
v +

∫
∂Dk

(f − PN f )
(gv + PN(gv))

2
.

D i
N1 = 0 holds (necessary for discrete entropy conservation).
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Entropy stable formulations and flux differencing

Talk outline

1 “Decoupled” summation by parts operators

2 Entropy stable formulations and flux differencing

3 Numerical experiments: triangles and tetrahedra

4 Entropy stable Gauss collocation methods: preliminary results

J. Chan (Rice CAAM) Discretely stable DG 7/25/2018 10 / 28



Entropy stable formulations and flux differencing

Split form of Burgers’: ∂u
∂t + 1

3

(
∂u2

∂x + u ∂u∂x

)
= 0

(a) Energy conservative (b) Energy stable

u =

[
Vq

Vf

]
û, û = modal coeffs., f ∗(u+, u) = numerical flux

dû
dt

+
1

3

[
Pq Lf

] (
DN

(
u2
)

+ diag (u) DNu
)

+ Lf

(
f ∗(u+, u)

)
= 0.
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û, û = modal coeffs., f ∗(u+, u) = numerical flux

dû
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û, û = modal coeffs., f ∗(u+, u) = numerical flux

dû
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Entropy stable formulations and flux differencing

Flux differencing: entropy conservative finite volume fluxes

Tadmor’s entropy conservative (mean value) numerical flux

fS (u,u) = f (u), fS (u, v) = fS (v ,u), (consistency, symmetry)

(vL − vR)T f (uL,uR) = ψL − ψR , (conservation).

Flux differencing for Burgers’ equation: let uL = u(x), uR = u(y)

fS (uL, uR) =
1

6

(
u2

L + uLuR + u2
R

)
,

∂f (u)

∂x
=⇒ 2

∂fS (u(x), u(y))

∂x

∣∣∣∣
y=x

=
1

3

∂u2

∂x
+

1

3
u
∂u

∂x
+

1

3
u2

�
��
∂1

∂x
.

Beyond split formulations: mass flux for compressible Euler

f ρS (uL,uR) = {{ρ}}log {{u}} , {{ρ}}log =
ρL − ρR

log ρL − log ρR
.

Tadmor, Eitan (1987). The numerical viscosity of entropy stable schemes for systems of conservation laws. I.

Chandrashekar (2013). Kinetic energy preserving and entropy stable FV schemes for compressible Euler and NS equations.
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(vL − vR)T f (uL,uR) = ψL − ψR , (conservation).

Flux differencing for Burgers’ equation: let uL = u(x), uR = u(y)

fS (u(x), u(y)) =
1

6

(
u(x)2 + u(x)u(y) + u(y)2

)
,

∂f (u)

∂x
=⇒ 2

∂fS (u(x), u(y))

∂x

∣∣∣∣
y=x

=
1

3

∂u2

∂x
+

1

3
u
∂u

∂x
+

1

3
u2

�
��
∂1

∂x
.

Beyond split formulations: mass flux for compressible Euler

f ρS (uL,uR) = {{ρ}}log {{u}} , {{ρ}}log =
ρL − ρR

log ρL − log ρR
.

Tadmor, Eitan (1987). The numerical viscosity of entropy stable schemes for systems of conservation laws. I.

Chandrashekar (2013). Kinetic energy preserving and entropy stable FV schemes for compressible Euler and NS equations.
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Entropy stable formulations and flux differencing

Flux differencing: implementational details

Define FS as evaluation of fS at all combinations of quadrature points

(FS )ij = fS (u(xi ), u(xj )) , x =
[
xq, x f

]T
.

Replace ∂
∂x with DN + projection and lifting matrices.

2
∂fS (u(x), u(y))

∂x

∣∣∣∣
y=x

=⇒
[

Pq Lf

]
diag(2DNFS ).

Efficient Hadamard product reformulation of flux differencing
(efficient on-the-fly evaluation of FS )

diag(2DNFS ) = (2DN ◦ FS ) 1.
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Entropy stable formulations and flux differencing

Flux differencing: avoiding the chain rule

Test (2QN ◦ FS ) 1 with entropy variables ṽ , integrate, use SBP:

ṽT (2QN ◦ FS ) 1 = ṽT

(([
0

Wf n

]
+ QN −QT

N

)
◦ FS

)
1.

Only boundary terms appear in final estimate; volume terms become
boundary terms using properties of (FS )ij = fS (ũi , ũj )

ṽT
((

QN −QT
N

)
◦ FS

)
1 = ṽT (QN ◦ FS ) 1− 1T (QN ◦ FS ) ṽ

=
∑
i ,j

(QN)ij (ṽi − ṽj )
T fS (ũi , ũj ).

Applying Tadmor shuffle condition requires ṽ = v(ũ); the entropy
variables ṽ must be a function of the conservative variables ũ.
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ṽT (2QN ◦ FS ) 1 = ṽT
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variables ṽ must be a function of the conservative variables ũ.
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Entropy stable formulations and flux differencing

Modifying the conservative variables

Conservative variables uh and test functions are polynomial, but the
entropy variables v(uh) 6∈ PN !

Evaluate flux fS using modified conservative variables ũ

ũ = u (PNv(uh)) .

If v(u) is an invertible mapping, this choice of ũ ensures that

ṽ = v(ũ) = PNv(uh) ∈ PN .

Local conservation w.r.t. a generalized Lax-Wendroff theorem.

Parsani et al. (2016). ES staggered grid disc. spectral collocation methods of any order for the comp. NS eqns.

Hughes, Franca, and Mallet (1986). A new finite element formulation for computational fluid dynamics: I. Symmetric
forms of the compressible Euler and Navier-Stokes equations and the second law of thermodynamics.

Shi and Shu (2017). On local conservation of numerical methods for conservation laws.
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Entropy stable formulations and flux differencing

A discretely entropy conservative DG method

Theorem (Chan 2018)

Let uh(x , t) =
∑

j ûj (t)φj (x) and ũ = u
([

Vq

Vf

]
Pqv

)
. Let û locally solve

M
dû
dt

+
d∑

i=1

[
Vq

Vf

]T (
2Q i

N ◦ F i
S

)
1 + V T

f Wf

(
f i
S (ũ+, ũ)− f i (ũ)

)
ni = 0.

Assuming continuity in time, uh(x , t) satisfies the quadrature form of∫
Ω

∂S(uh)

∂t
+

d∑
i=1

∫
∂Ω

(
(PNv)T f i (ũ)− ψi (ũ)

)
ni = 0.

Add interface dissipation (e.g. Lax-Friedrichs) for entropy inequality.

Parsani et al. (2016). ES staggered grid disc. spectral collocation methods of any order for the comp. NS eqns.

Shi and Shu (2017). On local conservation of numerical methods for conservation laws.

J. Chan (Rice CAAM) Discretely stable DG 7/25/2018 16 / 28



Entropy stable formulations and flux differencing
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dû
dt

+
d∑

i=1

[
Pq Lf

] (
2D i

N ◦ F i
S

)
1 + Lf

(
f i
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Entropy stable formulations and flux differencing

Illustration of main steps of ESDG


[

A B
−BT C

]
︸ ︷︷ ︸

Q i
N

◦
[
F vv

S F vf
S

F fv
S Fff

S

] 1

Interpolate projected entropy variables PNv(u) to all nodes.

Perform flux differencing at volume quadrature nodes.

Compute fS (uL,uR) for surface nodes of neighboring elements.

Compute fS (uL,uR) between volume/surface nodes, apply flux
differencing with interp. matrix + transpose for volume/surface nodes.
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Entropy stable formulations and flux differencing

1D Sod shock tube

Circles are cell averages.
CFL of .125 used for both GLL-(N + 1)and GQ-(N + 2).

N = 4,K = 32, (N + 1) point Gauss-Lobatto-Legendre quadrature.
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Entropy stable formulations and flux differencing

1D sine-shock interaction

GQ-(N + 2) needs smaller CFL (.05 vs .125) for stability.

N = 4,K = 40,CFL = .05, (N + 1) point Gauss-Lobatto-Legendre quadrature.
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Entropy stable formulations and flux differencing

On CFL restrictions

For GLL-(N + 1) quadrature, ũ = u (PNv) = u at GLL points.

For GQ-(N + 2), discrepancy between L2 projection and interpolation.

Still need positivity of thermodynamic quantities for stability!

(a) v3(x), (PNv3) (x) (b) ρ(x), ρ ((PNv) (x))
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Numerical experiments: triangles and tetrahedra

Talk outline

1 “Decoupled” summation by parts operators

2 Entropy stable formulations and flux differencing

3 Numerical experiments: triangles and tetrahedra

4 Entropy stable Gauss collocation methods: preliminary results
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Numerical experiments: triangles and tetrahedra

2D Riemann problem

(a) Ω = [−1, 1]2 (b) Ω = [−.5, .5]2, 32 × 32 elements

Degree N polynomials, degree 2N volume and surface quadratures.

Uniform 64× 64 triangle mesh: N = 3, CFL .125, Lax-Friedrichs flux.

Periodic on larger domain (“natural” boundary conditions unstable).
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Numerical experiments: triangles and tetrahedra

2D shock-vortex interaction

(a) t = .3 (b) t = .7

Vortex passing through a shock on a periodic domain (matrix
dissipation, degree N = 3 approximation, mesh size h = 1/128).

Can also impose existing entropy stable wall boundary conditions for
compressible Euler with decoupled SBP.

Winters, Derigs, Gassner, Walch (2017). A uniquely defined entropy stable matrix dissipation operator for high Mach
number ideal MHD and compressible Euler simulations.
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Numerical experiments: triangles and tetrahedra

Smooth isentropic vortex and curved meshes in 2D/3D

(a) 2D triangular mesh (b) 3D tetrahedral mesh

Figure: Example of 2D and 3D meshes used for convergence experiments.

Entropy stability: needs discrete geometric conservation law (GCL).

Generalized mass lumping for curved: weight-adjusted mass matrices.

Modify ũ = u (ṽ), ṽ = P̃k
Nv(uh) using weight-adjusted projection P̃k

N .

Visbal and Gaitonde (2002). On the Use of Higher-Order Finite-Difference Schemes on Curvilinear and Deforming Meshes.

Kopriva (2006). Metric identities and the discontinuous spectral element method on curvilinear meshes.

Chan, Hewett, and Warburton (2016). Weight-adjusted discontinuous Galerkin methods: curvilinear meshes.
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Numerical experiments: triangles and tetrahedra

Smooth isentropic vortex and curved meshes in 2D/3D

10−0.5 100

10−5

10−3

10−1
N = 2

3

N = 3

4

N = 4

5

Mesh size h

L
2

er
ro

r

Affine

Curved

(a) 2D results
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Mesh size h
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Curved

(b) 3D results

L2 errors for 2D/3D isentropic vortex at T = 5 on affine, curved meshes.

Visbal and Gaitonde (2002). On the Use of Higher-Order Finite-Difference Schemes on Curvilinear and Deforming Meshes.

Kopriva (2006). Metric identities and the discontinuous spectral element method on curvilinear meshes.

Chan, Hewett, and Warburton (2016). Weight-adjusted discontinuous Galerkin methods: curvilinear meshes.
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Numerical experiments: triangles and tetrahedra

3D inviscid Taylor-Green vortex: KE dissipation rate
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(a) KE dissipation rate (N = 3, h = π/8)
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(b) Change in
∫

Ω
U(u) (EC scheme)

Kinetic energy dissipation rate: good agreement with literature.

Change in
∫

Ω U(u)→ 0 as CFL→ 0 for entropy conservative scheme.
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Entropy stable Gauss collocation methods: preliminary results

Talk outline
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2 Entropy stable formulations and flux differencing
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4 Entropy stable Gauss collocation methods: preliminary results
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Entropy stable Gauss collocation methods: preliminary results

ES Gauss collocation (w/M. Carpenter, DCDR Fernandez)

(a) Staggered-grid (b) Generalized SBP

Gauss vs GLL quadrature: exact for degree (2N + 1) vs (2N − 1).

Inter-element coupling for Gauss is expensive. Staggered grid
collocation is an alternative, but requires degree (N + 1) GLL nodes.

ES Gauss scheme from decoupled SBP (collocation: Vq = Pq = I ).

Parsani et al. (2016). ES staggered grid disc. spectral collocation methods of any order for the comp. NS eqns.
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Entropy stable Gauss collocation methods: preliminary results

Entropy stable Gauss collocation: main steps


[

A B
−BT C

]
︸ ︷︷ ︸

Q i
N

◦
[
F vv

S F vf
S

F fv
S Fff

S

] 1

Collocate u, interpolate entropy variables v(u) to surface nodes.

Perform flux differencing at Gauss nodes.

Compute fS (uL,uR) for surface nodes of neighboring elements.

Compute fS (uL,uR) between volume/surface nodes, apply flux
differencing with interp. matrix + transpose for volume/surface nodes.
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Entropy stable Gauss collocation methods: preliminary results

Numerical results: 2D/3D isentropic vortex

(a) Warped curvilinear mesh

10−2 10−1
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10−3

100

Affine

Curved

Mesh size h

GLL

GQ

(b) 2D L2 errors (N = 4)

Entropy stability for Gauss collocation on curved meshes: compute
geometric terms at GLL points, interpolate to volume and face points.
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Entropy stable Gauss collocation methods: preliminary results

Numerical results: 2D/3D isentropic vortex
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(a) 3D L2 errors (N = 4)

Curvilinear results: in progress!
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Entropy stable Gauss collocation methods: preliminary results

Summary and future work

Discrete semi-discrete entropy stability for (almost) arbitrary choices
of basis, quadrature. Usual challenges (positivity, Gibbs, BCs) apply.

DG-SEM: volume/surface cross terms cancel out!

Current work: Gauss collocation (with DCDR Fernandez, M.
Carpenter), adaptivity + hybrid meshes, multi-GPU.

This work is supported by DMS-1719818 and DMS-1712639.

Thank you! Questions?

Chan, Wilcox (2018). On discretely entropy stable weight-adjusted DG methods: curvilinear meshes.

Chan (2017). On discretely entropy conservative and entropy stable discontinuous Galerkin methods.
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Entropy stable Gauss collocation methods: preliminary results

Additional slides
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Entropy stable Gauss collocation methods: preliminary results

Sketch of proof of entropy conservation (one element)

Multiply by mass matrix on both sides, rewrite as

M
dû
dt

+

[
Vq

Vf

]T (
QN ◦ fS

([
Vq

Vf

]
Pqvq

))
1 = 0.

Test with L2 projection of entropy variables Pqvq = M−1V T
q Wvq.

(Pqvq)T M
dû
dt

= vT
q WVqM−1MVq

dû
dt

= vT
q W

d(Vqû)

dt
= 1T W

(
dS(uq)

du
duq

dt

)
=

dS(uq)

dt
.

Spatial term vanishes using SBP, skew-symmetry, and properties of fS .
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Entropy stable Gauss collocation methods: preliminary results

1D Sod: over-integration ineffective w/out L2 projection

(a) Degree N GLL, (N + 1) points (b) Degree N GLL, (N + 4) points

Figure: Sod shock tube for N = 4 and K = 32 elements. Over-integrating by
increasing the number of quadrature points does not improve solution quality.
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Entropy stable Gauss collocation methods: preliminary results

2D curved meshes: conservation of entropy
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(a) With weight-adjusted projection
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(b) Without weight-adjusted projection

Figure: Change in entropy under an entropy conservative flux with N = 4. In both
cases, the spatial formulation tested with ṽ = PNv(u) is O

(
10−14

)
.
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