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High order methods typically unstable for nonlinear PDEs
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(b) 8th order DG

m High order methods tend to blow up for under-resolved solutions
(shocks, turbulence), sensitive to discretization.

m Instability: quadrature error + loss of the discrete chain rule in space.
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High order methods typically unstable for nonlinear PDEs

Time = 0.499675 Time = 0.499675
4 4
3 3
2 2

- _— — -

2 2

3 3

“ 05 0 05 1 “ 05 0 05 1
(a) Inviscid Burgers' solution (b) 8th order DG

m High order methods tend to blow up for under-resolved solutions
(shocks, turbulence), sensitive to discretization.

m Instability: quadrature error + loss of the discrete chain rule in space.
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High order methods typically unstable for nonlinear PDEs
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(a) Inviscid Burgers' solution (b) 8th order DG

m High order methods tend to blow up for under-resolved solutions
(shocks, turbulence), sensitive to discretization.

m Instability: quadrature error + loss of the discrete chain rule in space.
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High order methods typically unstable for nonlinear PDEs
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(a) Inviscid Burgers' solution (b) 8th order DG

m High order methods tend to blow up for under-resolved solutions
(shocks, turbulence), sensitive to discretization.

m Instability: quadrature error + loss of the discrete chain rule in space.
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Entropy stability for nonlinear problems uses the chain rule

m Generalizes energy stability to nonlinear systems of conservation laws
(Burgers', shallow water, compressible Euler, MHD).

ou  Of(u)

ot T ox

=0 x € [-1,1].

m Continuous entropy inequality: given a scalar convex entropy function
S(u) and “entropy potential” 1(u),

1 du  Of(u) dS
T _— e = —
/1 Y <8t + Ox > 0 "' u

= o[ st (vTrw) - vw)[! <o

m Proof of entropy inequality relies on chain rule, integration by parts.

Continuous entropy stability: Hughes et al. 1986, Zakerzadeh/May, Fernandez/Nguyen/Peraire, Williams, ...
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Entropy stable nodal DG and summation-by-parts

Talk outline

1 Entropy stable nodal DG and summation-by-parts

2 Entropy stable modal DG formulations

3 Numerical experiments
Triangular and tetrahedral meshes
Quadrilateral and hexahedral meshes
Hybrid and non-conforming meshes
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Entropy stable nodal DG and summation-by-parts

Nodal DG, summation-by-parts (SBP), flux differencing

-1

m Gauss-Lobatto nodes mimic integration by parts algebraically

Q=B-Q', Q =MD, M diagonal mass matrix.
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Entropy stable nodal DG and summation-by-parts

Nodal DG, summation-by-parts (SBP), flux differencing

-1

m Gauss-Lobatto nodes mimic integration by parts algebraically

Q=B-Q', Q =MD, M diagonal mass matrix.
m Nodal “collocation” over a single element:
du

du,-
M=+ Qf(u)=0 = M-+ zj: Q;f (uj) =0.
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Entropy stable nodal DG and summation-by-parts

Nodal DG, summation-by-parts (SBP), flux differencing

o 0l -1

Dis = 3

T=x;

m Gauss-Lobatto nodes mimic integration by parts algebraically

Q=B-Q', Q =MD, M diagonal mass matrix.

m Nodal “collocation” over a single element:

du du;
M=+ Qf(u)=0 = M-+ EJ: Q;f (uj) =0.

m Let fs(uj,uj) =1 (F(u;) + fu))) = (Fs);- Collocation equiv. to

du; du
M""dtJij: Qy2fs (uu)) =0 = |M - +2(QoFs)1=0.
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m DG: derive local formulation (one element) with interface flux f*

Mi—:-I—Q(QOFs)l:O

Tadmor, Eitan (1987), Gassner, Winters, and Kopriva (2016).



m DG: derive local formulation (one element) with interface flux f*

Mc(li—lt'—i—((Q—QT)0F5>1J+(B°F5)1=0
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SBP property

Tadmor, Eitan (1987), Gassner, Winters, and Kopriva (2016).



m DG: derive local formulation (one element) with interface flux f*

Mi—:-i—((Q—QT)oFS)l—i- w —0.
(Fs);=f(u;) + diagonal B

Tadmor, Eitan (1987), Gassner, Winters, and Kopriva (2016).



m DG: derive local formulation (one element) with interface flux f*

M‘Cil—'t’+((o—oT>oF5)1+ Bf =0

Numerical flux

Tadmor, Eitan (1987), Gassner, Winters, and Kopriva (2016).



m DG: derive local formulation (one element) with interface flux f*

Mi—:—i-((Q—QT)OFs)l—i-Bf*:O.

Tadmor, Eitan (1987), Gassner, Winters, and Kopriva (2016).



Entropy stable nodal DG and summation-by-parts

Entropy stable schemes: a brief derivation

m DG: derive local formulation (one element) with interface flux f*

du

M-—
dt +

((Q_QT) oFs)l—i—Bf*:O.

m Trick: use Tadmor's entropy conservative numerical flux for fg, F*
fs(u,u)=f(u), (consistency)
fs(u,v)="Ffs(v,u),  (symmetry)

(vi —vgr)' Fs(uL,ur) =, — g, (conservation).

Tadmor, Eitan (1987), Gassner, Winters, and Kopriva (2016).
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Entropy stable schemes: a brief derivation

m DG: derive local formulation (one element) with interface flux f*

du

M-—
dt +

((Q_QT) oFs)l—i—Bf*:O.

m Trick: use Tadmor's entropy conservative numerical flux for fg, F*

fs(u,u)=f(u), (consistency)
fs(u,v)=Fs(v,u),  (symmetry)
(vi —vgr)' Fs(uL,ur) =, — g, (conservation).

m Proof of entropy conservation: multiply by v’

vTMi—f: +vT ((Q - QT) o F5> 1+v Bf* =0.

Tadmor, Eitan (1987), Gassner, Winters, and Kopriva (2016).
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Entropy stable schemes: a brief derivation
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dt

+"Q1-1"Qy + v Bf* =0.

Tadmor, Eitan (1987), Gassner, Winters, and Kopriva (2016).
J. Chan (Rice CAAM) Entropy stable DG 4/3/19

5/21



Entropy stable nodal DG and summation-by-parts

Entropy stable schemes: a brief derivation

m DG: derive local formulation (one element) with interface flux f*
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m Trick: use Tadmor's entropy conservative numerical flux for fg, F*

fs(u,u)=f(u), (consistency)
fs(u,v)=Fs(v,u),  (symmetry)
(vi —vgr)' Fs(uL,ur) =, — g, (conservation).

m Proof of entropy conservation: multiply by v’

dS(u)

1"mM—
dt

+17B (va* - w) —0.

Tadmor, Eitan (1987), Gassner, Winters, and Kopriva (2016).
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Entropy stable nodal DG and summation-by-parts

Benefits of entropy stability (conservation)
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) Entropy conservative flux, T = .3 (b) Entropy conservative flux, T =.7

Figure: Compressible Euler shock vortex interaction: 200 x 100 degree N = 4
elements, 4th order explicit RK time-stepping, no limiters or artificial viscosity.

Jiang, Shu (1998). Efficient Implementation of Weighted ENO Schemes.
Chandrashekar (2013). Kinetic energy preserving and entropy stable FV schemes for compressible Euler and NS equations.

Winters, Derigs, Gassner, and Walch (2017). A uniquely defined entropy stable matrix dissipation operator for high Mach
number ideal MHD and compressible Euler simulations.
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Entropy stable nodal DG and summation-by-parts

Benefits of entropy stability (conservation)
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Local Lax-Friedrichs flux, T = .3 (b) Local Lax-Friedrichs flux, T = .7

Figure: Compressible Euler shock vortex interaction: 200 x 100 degree N = 4
elements, 4th order explicit RK time-stepping, no limiters or artificial viscosity.

Jiang, Shu (1998). Efficient Implementation of Weighted ENO Schemes.
Chandrashekar (2013). Kinetic energy preserving and entropy stable FV schemes for compressible Euler and NS equations.

Winters, Derigs, Gassner, and Walch (2017). A uniquely defined entropy stable matrix dissipation operator for high Mach
number ideal MHD and compressible Euler simulations.
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Entropy stable nodal DG and summation-by-parts

Benefits of entropy stability (conservation)

-
. ’ .

Matrlx dissipation flux, T = .3 (b) Matrix dissipation flux, T = .7

Figure: Compressible Euler shock vortex interaction: 200 x 100 degree N = 4
elements, 4th order explicit RK time-stepping, no limiters or artificial viscosity.

Jiang, Shu (1998). Efficient Implementation of Weighted ENO Schemes.
Chandrashekar (2013). Kinetic energy preserving and entropy stable FV schemes for compressible Euler and NS equations.

Winters, Derigs, Gassner, and Walch (2017). A uniquely defined entropy stable matrix dissipation operator for high Mach
number ideal MHD and compressible Euler simulations.
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Entropy stable nodal DG and summation-by-parts

Benefits of entropy stability (conservation)

(a) Matrix dissipation flux, T = .3 (b) Matrix dissipation flux, T = .7

Figure: Compressible Euler shock vortex interaction: 200 x 100 degree N = 4
elements, 4th order explicit RK time-stepping, no limiters or artificial viscosity.

Jiang, Shu (1998). Efficient Implementation of Weighted ENO Schemes.
Chandrashekar (2013). Kinetic energy preserving and entropy stable FV schemes for compressible Euler and NS equations.

Winters, Derigs, Gassner, and Walch (2017). A uniquely defined entropy stable matrix dissipation operator for high Mach
number ideal MHD and compressible Euler simulations.
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1 Entropy stable nodal DG and summation-by-parts
2 Entropy stable modal DG formulations

3 Numerical experiments
Triangular and tetrahedral meshes
Quaderilateral and hexahedral meshes
Hybrid and non-conforming meshes



Entropy stable modal DG formulations

Modal formulations: general bases and quadrature

Polynomials © o gl Volume
| quadrature

! ! ! \ Surface
quadra‘ture

m Assume degree 2/N volume + surface quadratures (xf’, w?), (xf, wf),
and basis functions ¢;(x). Define interpolation and weight matrices

(Vo) =di(x]).  (Ve)y = o5(x),
W = diag (w9), W = diag (wf) .
m Discretize Py : L2 — PV, yields a quadrature-based projection matrix
(Pnu,v) = (u,v) WweP' — P=MTVIW.

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 7/21



Entropy stable modal DG formulations

Quadrature-based “finite difference” matrices

E=V,P,
Volume /_’T’olvnmmalx\‘ Surface

quadrature quadrature

P, Vi
o i 08 o ’ o N )

m Matrix Dg: evaluates ith derivative of L2 projection Py at x9.

Dg = VquPq, D' exactly differentiates polynomials.
m Generalized summation-by-parts: let Q; = WD; and E = V¢P,
Qi+ Q;" = ETB,E, B; = Wqdiag (n;)

aPNU aPNV / —~
— = P P i
b Ox V+/5u Ox; 65( wu) (Puv)a
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Entropy stable modal DG formulations

Problems with generalized SBP on multiple elements

o o oo o o o

Coupling between quadrature nodes on neighboring elements.

m Re-deriving the local DG formulation with GSBP operators:

M%+2(QOF5)1:0.
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Entropy stable modal DG formulations

Problems with generalized SBP on multiple elements

o o oo o o o

Coupling between quadrature nodes on neighboring elements.
m Re-deriving the local DG formulation with GSBP operators:

Mi—:wt ((Q— QT) oFs) 1+ ((ETBE> . F5> 1=0.
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Entropy stable modal DG formulations

Problems with generalized SBP on multiple elements

o o oo o o o

Coupling between quadrature nodes on neighboring elements.

m Re-deriving the local DG formulation with GSBP operators:
du T - B
M+ ((@-Q7)oFs)1+ ((ETBE) o Fs)1=o0.
m The presence of the interpolation matrix E increases inter-element

coupling, complicates imposition of BCs.
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Entropy stable modal DG formulations

A “decoupled” SBP operator

m Goal: SBP property without E in the boundary terms

1pT 1pT
QN:[Q—ZE BE LE B}’

1 1
-1BE 1B

mIf Q+ Q" = ETBE, then the block matrix Q@ satisfies

T 0 /1 OPnu 8PNV_ 1
Qn+ Qn —[ B | ox v+u B = uv| .

m @ approximates fg—f by u using data at x = [Xyol, Xface]

.
% .
Mu = [ vy ] diag (F) Qng,  fi,g; = f(xi), g(xi).

m Reduces to traditional SBP operator under appropriate quadrature.
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Entropy stable modal DG formulations

Entropy stable schemes using decoupled SBP operators

m Replace SBP operator with decoupled SBP operator

du

M—
dt +

((Q - QT) ° FS) 1+ BFf =0.
m Fs is the matrix of flux evaluations between solution values at both
volume and face nodes using entropy projection:
(Fs); = fs(uj, u)), u = evaluate u(Pyv(u)).

m Semi-discrete scheme is verifiably entropy conservative for inexact
quadrature! Add appropriate interface dissipation (e.g. Lax-Friedrichs,
HLLC) for entropy stability.

Chan (2018). On discretely entropy conservative and entropy stable discontinuous Galerkin methods.
Parsani et al. (2016), Entropy Stable Staggered Grid Discontinuous Spectral Collocation Methods
J. Chan (Rice CAAM) Entropy stable DG 4/3/19 11/21



Entropy stable modal DG formulations

Entropy stable schemes using decoupled SBP operators

m Replace SBP operator with decoupled SBP operator
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m Fs is the matrix of flux evaluations between solution values at both
volume and face nodes using entropy projection:
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Numerical experiments  Triangular and tetrahedral meshes

Smooth isentropic vortex and curved meshes in 2D /3D

(a) 2D triangular mesh (b) 3D tetrahedral mesh

m “Split” form of derivatives on curved elements for entropy stability.

d
J0% 0u 1 Ox; Ou 9 (0%
ax, ,Zl dx; O%; 2;<J3X: 9%; +3?<j <J3Xf ))

m Discrete geometric conservation law (GCL) now a necessary condition.

Visbal and Gaitonde (2002). On the Use of Higher-Order Finite-Difference Schemes on Curvilinear and Deforming Meshes.
Chan, Hewett, and Warburton (2016). Weight-adjusted discontinuous Galerkin methods: curvilinear meshes.
J. Chan (Rice CAAM) Entropy stable DG 4/3/19 12/21



Numerical experiments  Triangular and tetrahedral meshes

Smooth isentropic vortex and curved meshes in 2D /3D

L2 error

Affine Affine
— — — Curved 5 — — — Curved

1075 T - i |

10702 10° 10° 10%°
Mesh size h Mesh size h
(c) 2D results (d) 3D results

L? errors for 2D /3D isentropic vortex at T = 5 on affine, curved meshes.

Visbal and Gaitonde (2002). On the Use of Higher-Order Finite-Difference Schemes on Curvilinear and Deforming Meshes.
Chan, Hewett, and Warburton (2016). Weight-adjusted discontinuous Galerkin methods: curvilinear meshes.
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Triangular and tetrahedral meshes

Figure: Isocontours of z-vorticity for Taylor-Green at t = 0,10 seconds.

m Simple turbulence-like behavior (generation of small scales).

m Inviscid Taylor-Green: tests robustness w.r.t. under-resolved solutions.

https://how4.cenaero.be/content/bs1-dns-taylor-green-vortex-re1600.
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https://how4.cenaero.be/content/bs1-dns-taylor-green-vortex-re1600

Numerical experiments  Triangular and tetrahedral meshes

Inviscid Taylor-Green vortex: robust w.r.t. under-resolution

[
—— Affine

.014 -

- — — Curved

—.—.- Gassner et al.

Time t

Kinetic energy dissipation rate —2% for N = 3, h = /8, CFL = .25 (tet meshes).
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Numerical experiments Quaderilateral and hexahedral meshes

Entropy stable Gauss collocation: main steps

o o o o
(e] (e] [e] [e]
A B] [F¢ F¢
(¢]
-BT c| |F¥ Ftf
(e] (e] [e] [e]
Q) Fs
o o (¢] o

m Advantage of hexahedra vs. tetrahedra: tensor product structure.
m (N + 1)-point Gauss quadrature reduces to a collocation scheme.

m Reduces computational costs from O(N®) to O(N*) in 3D.

J. Chan (Rice CAAM) Entropy stable DG 4/3/19
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Numerical experiments Quaderilateral and hexahedral meshes

Gauss quadrature improves errors on curved meshes

100 + N
o
e
5 10| |
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- [O0- Gauss
1010 : i
10715 1071
Mesh size h

Figure: L2 errors for the 2D isentropic vortex at time T =5 for degree
N =2,...,7 Lobatto and Gauss collocation schemes (similar behavior in 3D).
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Numerical experiments Quaderilateral and hexahedral meshes

Gauss quadrature improves errors on curved meshes
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Figure: L2 errors for the 2D isentropic vortex at time T =5 for degree
N =2,...,7 Lobatto and Gauss collocation schemes (similar behavior in 3D).
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Numerical experiments Quaderilateral and hexahedral meshes

Gauss quadrature improves errors on curved meshes
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Figure: L2 errors for the 2D isentropic vortex at time T =5 for degree
N =2,...,7 Lobatto and Gauss collocation schemes (similar behavior in 3D).
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Numerical experiments Quaderilateral and hexahedral meshes

Gauss quadrature improves errors on curved meshes
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Figure: L2 errors for the 2D isentropic vortex at time T =5 for degree
N =2,...,7 Lobatto and Gauss collocation schemes (similar behavior in 3D).
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Numerical experiments Hybrid and non-conforming meshes

Mixed quadrilateral-triangle meshes

(a) No SBP (tri. under-integrated) (b) No SBP (quad. under-integrated)

m GSBP property lost if surface quadrature insufficiently accurate.

m Skew-symmetric formulation remains entropy stable under “weak”
GSBP property, relaxed requirements on quadrature accuracy.

Chan (2019). Skew-symmetric entropy stable modal discontinuous Galerkin formulations.
J. Chan (Rice CAAM) Entropy stable DG 4/3/19 17 /21



Numerical experiments Hybrid and non-conforming meshes

Numerical results: mixed triangle-quadrilateral meshes

10° 1
1072 | :
4| —O— Lobatto-Lobatto | |
10 — [0- Lobatto-Gauss
—A— Gauss-Gauss
107! 10702
Mesh size h
(a) Coarse hybrid mesh (b) L? errors for N =1,2,3,4

The skew-symmetric formulation guarantees entropy stability for all
combinations of Lobatto and Gauss volume and surface quadratures.
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Numerical experiments Hybrid and non-conforming meshes

Non-conforming interfaces

o o o ol o

@----0------ ©----04--10

o [e] (¢] o =]

o o) o o ¢

(a) Conforming surface (b) Non-conforming
quadrature nodes surface nodes

m Volume/surface nodes interact through fs(uj, u;) and interpolation.

m Fix: weakly couple conforming-+non-conforming faces using a mortar.

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 19/21



Numerical experiments Hybrid and non-conforming meshes

Numerical results: non-conforming meshes

T T T 1 171 ‘ T T T T 1T 1T

[ [ [ [ N=1
[ [ [ [ 100 N =2

[ [ [ [ N=3
| [ | [ | [ | [ " N=4
l [ l [ l [ l [ % 102

[ [ [ [ N,
[ [ [ [
| I | I | I | I e D/ —O— Lobatto

_ 4 - [O- Gauss
l l l l 1047‘\:'\\\\\\ — T |
107! 10°
Mesh size h

(a) Coarse non-conforming mesh (b) Sub-optimal rates if under-integrated

The skew-symmetric formulation guarantees entropy stability for both
Lobatto and Gauss quadratures, but Gauss is more accurate.
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Numerical experiments Hybrid and non-conforming meshes

Summary and future work

m Entropy stable high order “modal” DG: flexibility in choosing basis
and quadrature, improved accuracy on curved meshes.

m Current work: ROMs, strong shocks, positivity preservation.

m This work is supported by DMS-1719818 and DMS-1712639.

Thank you! Questions?

Chan (2019). Skew-symmetric entropy stable modal discontinuous Galerkin formulations.

Chan, Del Rey Fernandez, Carpenter (2018). Efficient entropy stable Gauss collocation methods.
Chan, Wilcox (2018). On discretely entropy stable weight-adjusted DG methods: curvilinear meshes.
Chan (2018). On discretely entropy conservative and entropy stable discontinuous Galerkin methods.
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Numerical experiments Hybrid and non-conforming meshes

Decoupled SBP operators add boundary corrections

2 —@— GSBP [
S —— Decoupled 100 N
- — — Exact
0 - 1072 |
—0— GSBP
—{1— Decoupled
2L I \ 104 i : | e
-1 0 1 0 5 10 15
(a) Derivative approximations (b) L? error w.r.t. degree N

m Equivalent to a variational problem for a polynomial u(x) ~ fg—i.

/_1 u(x)v(x) =/_1fag)":gv+ (g — P/vg)(ﬁ”r?"(ﬁ/)) K
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m Entropy conservative flux for Burgers' equation

fs(up, ug) = (uf + upup + u,%) .

|

m Flux differencing: let u; = u(x), ugr = u(y)

OF(w) s (u(x). u(y))
o =2 oy

y=x



Numerical experiments Hybrid and non-conforming meshes

Flux differencing: recovering split formulations

m Entropy conservative flux for Burgers' equation

1

fs(ul_, UR) = 6 (UE + upup + U,z?) .

m Flux differencing: let u; = u(x), ug = u(y)

of (u) Ofs (u(x), u(y))
ox =2 Ox

y=x

m Recovering the Burgers' split formulation

fo(u(x), () = 3 () + a(x)u(y) + u(y)?)
B0 102 100 108

1,
0x yex 3 0x 3
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Numerical experiments Hybrid and non-conforming meshes

1D compressible Euler equations

m Inexact Gauss-Legendre-Lobatto (GLL) vs Gauss (GQ) quadratures.
m Entropy conservative (EC) and dissipative Lax-Friedrichs (LF) fluxes.
m No additional stabilization, filtering, or limiting.

TT ‘ T T T 1117 ‘ T 1
10-t 1 N
N =
N =
1078 N = 8
N=4 . N = " - o- oLl
N=5 O GQ-(N +2) /V_5§/D_D_GQ(N+2)
10711\\1 I L | | | TTTT T T TT1 10711\\1 I L | | TTTT T T TT1
1072 107! 1072 107t
Mesh size h Mesh size h
(c) Entropy conservative flux (d) With Lax-Friedrichs penalization
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Numerical experiments Hybrid and non-conforming meshes

Conservation of entropy: semi-discrete vs. fully discrete

AS(u) = |S(u(x,t)) — S(u(x,0))| — 0 as as At — 0.

==== Density, EC
3.5 - = Velocity, EC

4 P ———" 500000DODDDDDDIODOD ! ! —— Density, LF
102 J'_"-J.;.Q'I)‘D'D';'QD""JODDJ:‘J)J) 3t A Velocity, LF |

E yoo0e® T

L 25
107 e 2

A I i

BE 1.5
10 1

[ ——EC, CFL = 0500

- - EC, CFL =0.250 05l
. EC, CFL=0.125 . PRI
10 o LF, CFL = 0.500 obmnma e Mo e
* LF,CFL=0.250 LAY Wt
LF, CFL =0.125 Pl
i 05F
-10
10
05 1 1.5 2 4 | | |
Time -1 -0.5 0 0.5 1
(a) AS(u) for various At (b) p(x), u(x) (N =4,K = 16)

Solution and change in entropy AS(u) for entropy conservative (EC) and
Lax-Friedrichs (LF) fluxes (using GQ-(N + 2) quadrature).
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m (N + 2)-point Gauss needs a smaller CFL (.05 vs .125) for stability.

---Density
—Reference

2 -
i
1h M
i
0 1 1 1 1 1 1 1 1 1 ]
-5 -4 -3 -2 -1 0 1 2 3 4 5

N =4, K =40, CFL = .05, (N + 1) point Lobatto quadrature.



m (N + 2)-point Gauss needs a smaller CFL (.05 vs .125) for stability.

---Density
—Reference

| I 1 1 | I I 1 1 |

% -4 -3 2 -1 0 1 2 3 4 5
N =4 K =40, CFL = .05, (N + 2) point Gauss quadrature.




Numerical experiments Hybrid and non-conforming meshes

Loss of control with the entropy projection

m For (N + 1)-Lobatto quadrature, u = u (Pyv) = u at nodal points.
m For (N 4 2)-Gauss, discrepancy between v(u) and L? projection.

m Still need positivity of thermodynamic quantities for stability!

’ —V “ 1 |—— Density (original)
201 - - Projected v, 0 : - = Density (projected entropy variables)
’ 18 \
-0.2 16 :
: |
14 |
-0.3 12 :
10 :
0.4 / o !
1
6 1
-0.5 1
drm— — - = -
1
-0.6 2 1 4
—~— |
45 4 35 3 2.5 2 s -4 35 3 25 2
(€) va(x), (Puvs) (x) (d) p(x), p ((Puv) (x))
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Numerical experiments Hybrid and non-conforming meshes

Over-integration is ineffective without L? projection

Density -~ Density
Velocity Velocity
| —Pressure —Pressure

(e) (N + 1) points (f) (N + 4) points

Figure: Numerical results for the Sod shock tube for N = 4 and K = 32 elements.
Over-integrating by increasing the number of quadrature points does not improve
solution quality.
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~ Numerical experiments  Hybrid and non-conforming meshes
2D Riemann problem

m Uniform 64 x 64 mesh: N = 3, CFL .125, Lax-Friedrichs stabilization.
m No limiting or artificial viscosity required to maintain stability!
m Periodic on larger domain (“natural” boundary conditions unstable).

Jis

e %
14

J18

() Q=[-1,1]° (b) Q =[5, .5]°, 32 x 32 elements

I Chan (RiccCAAM) Entropy stable DG Y



Numerical experiments Hybrid and non-conforming meshes

Non-conforming interfaces and SBP mortars

En
—_—

| I
DS
Y

E,

\\
RO
W

\
;

W

m Define appropriate interpolation operators E,, Em between
conforming and non-conforming (mortar) nodes.

m Modify the skew-symmetric formulation as follows:

d T
du V,] [Q —Q] ETB, To f* _
M-+ §__1 [vf] [ BE + E'Bf; =0.
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Numerical experiments Hybrid and non-conforming meshes

Non-conforming interfaces and SBP mortars

o o o o
o o ol E o o
e
—
o o 5 o o
o o o o

m Define appropriate interpolation operators E,, Em between
conforming and non-conforming (mortar) nodes.

m Modify the skew-symmetric formulation as follows:

W Ave]'|@-@] ETBi R
M-+ V¢ —BE B/E,| + V., Bifi =
i=1 |V, —BE,,
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Numerical experiments Hybrid and non-conforming meshes

Non-conforming interfaces and SBP mortars

o o o o
o o o o E o o
 ——
—
o o 5 o o
o o o o

m Define appropriate interpolation operators E,, E ., between
conforming and non-conforming (mortar) nodes.

m Rewrite as modification of numerical flux.

fi=Enf;+ (Eno FE") 1 En(Emo FE)1
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