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e Aerodynamics applications:
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shocks.

turbulence

on

o Goal:

v,
v

vy

)
KRS0

>
LK

SN,
SV
uwv»&wi
R
L TAVAVA
X

¥
KRS
s

5
4

f
&
K

Mesh from Slawig 2001.



High order finite element methods for hyperbolic PDEs

e Aerodynamics applications:
acoustics, vorticular flows,
turbulence, shocks.

e Goal: high accuracy on

unstructured meshes.

e Discontinuous Galerkin (DG)
methods: geometric
flexibility, high order
accuracy.



Why high order accuracy?
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High order

accurate resolution of propagating vortices and waves.



high order accuracy?

2nd, 4th, and 16th order Taylor-Green (top), 8th order Kelvin-Helmholtz
(bottom). Vorticular structures and acoustic waves are both sensitive to

numerical dissipation. Results from Beck and Gassner (2013) and Per-Olof
Persson's website.



Why discontinuous Galerkin methods?

0 20 10 60 80 100 0 50 100 150
nz = 2201 nz = 2475

(a) High order FEM (b) High order DG

The DG mass matrix is easily invertible for explicit time-stepping.



hy not high order DG methods?
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(a) Exact solution (b) 8th order DG

High order methods blow up for under-resolved solutions
of nonlinear conservation laws (e.g., shocks and turbulence).




Why not high order DG methods?

Time = 0.499675 Time = 0.499675
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(a) Exact solution (b) 8th order DG

High order methods blow up for under-resolved solutions
of nonlinear conservation laws (e.g., shocks and turbulence).




Why not high order DG methods?
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(a) Exact solution (b) 8th order DG

High order methods blow up for under-resolved solutions
of nonlinear conservation laws (e.g., shocks and turbulence).




Why not high order DG methods?
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(a) Exact solution (b) 8th order DG

High order methods blow up for under-resolved solutions
of nonlinear conservation laws (e.g., shocks and turbulence).




Why entropy stability for high order schemes?

In practice, high order schemes need solution regularization (e.g.,
artificial viscosity, filtering, slope limiting).

e Goal: stability independent

Robustness

of solution regularization.

e Entropy stable schemes:
improve robustness without
reducing accuracy.

Image adapted from “Man On Wire” (2008)

Finite volume methods: Tadmor, Chandrashekar, Ray, Svard, Fjordholm, Mishra, LeFloch, Rohde, ...
High order tensor product elements: Fisher, Carpenter, Gassner, Winters, Kopriva, Persson, ...

High order general elements: Chen and Shu, Crean, Hicken, Del Rey Fernandez, Zingg, ...



Examples of high order entropy stable simulations

Temperature
068 09 1.1 14 16

All simulations run without artificial viscosity, filtering, or slope limiters.

Chen, Shu (2017). Entropy stable high order DG methods with suitable quadrature rules. . .
Bohm et al. (2019). An entropy stable nodal DG method for the resistive MHD equations. Part |.
Dalcin et al. (2019). Conservative and ES solid wall BCs for the compressible NS equations. 5/41



Entropy conservative/stable finite
volume methods



Basics of finite volume methods
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Basics of finite volume methods

b J
x‘_& x‘-‘K- N~

W

e Solve for u; = %fi’:l//; u(z,t)dz.
du; B Fu(zit/o,t) — Flu(zi—/o,t)

=0
dt h




Basics of finite volume methods

b J
x‘_& x‘-‘K- N~

W

e Solve for u; = %f;”ﬁ//j u(z,t)dz.

=0

du; N Fu(zit/o,t) — Flu(zi—/o,t)
dt h

e Replace f(u(w;t1/2,t)) with a numerical flux

du; n Fs(uipi,u;) — fo(ug,u_q)

dt h ={



Entropy stability for nonlinear problems

e Energy balance for nonlinear conservation laws (Burgers’,
shallow water, compressible Euler + Navier-Stokes).

=0.

ot ox

ou n of (u)

e Continuous entropy inequality: convex entropy function S(u),
“entropy potential” ¥)(u), entropy variables v(u)

ou  Of(u)\ _ 08
/QvT<8t+ o )—0, U(u)—%

0S(u) .
=5 T () s <0




Entropy conservative finite volume methods

e Finite volume scheme:

du; n Fs(uigr,u;) — fs(uirr,ug)

dt h =L

e Take fg to be an entropy conservative numerical flux

fs(u,u) = f(u), (consistency)
fs(u,v) = fs(v,u), (symmetry)
(vr —vr)" fs (ur,ur) =1 — ¥r, (conservation).

e Can show numerical scheme conserves entropy

0S(u) _~—, dS(u)
o Ot Nzh a

Tadmor (1987). The numerical viscosity of entropy stable schemes for systems of conservation laws.



Entropy finite volume methods

e Finite volume scheme with dissipation d(u):

du; | fs(uipr,u) — fs(uipr, w)
dt h

= d(u).
e Take fg to be an entropy conservative numerical flux

fs(u,u) = f(u), (consistency)
fS(uv ’U) = fS('Ua u)v (SymmetrY)

(vL — UR)T fs(ur,ur) =L — ¥r, (conservation).

e Can show numerical scheme dissipates entropy

‘/\\ b

0.

9S(u) <, dS(w) o
o ot ~) h -V dw

Tadmor (1987). The numerical viscosity of entropy stable schemes for systems of conservation laws.



Example of EC fluxes (compressible Euler equations)

e Define average {{u}} = 3(uz + ug). In one dimension:

fi(ur,ur) = {p}}'*® {ul}
fé(ur, ur) = {ul} f3 + Pave
fg(uL, uR) = (Eavg + Pavg) {{ul},

_ o IR0 L
PR T Ay -y 2

e Non-standard logarithmic mean, “inverse temperature” (3

log _ YL 7UR _r
Hulh loguy, — logug’ b 2p

Chandreshekar (2013), Kinetic energy preserving and entropy stable finite volume schemes for the
compressible Euler and Navier-Stokes equations.



Matrix reformulation using Hadamard products

Hadamard product of two matrices Ao B

Au ... Ay, Bi1 ... B, AiBy1 ... AyBi,
: C o 0 . | = ; : :

A ... A B, ... Bun A,B,i ... AuBn,



Matrix reformulation using Hadamard products

Hadamard product of two matrices Ao B

Ain ... Ay (B ... By A;Bin ... ApBi,
: ool e | = : B :
A ... A B, ... Bu AnBn ... ABpy
Rewrite an N-point (periodic) finite volume scheme as
uy Fs(ui,u2) = fs(un,u)

d |ue 1| fs(uz,u3) — fs(ui,uz)

uy fs(un,ur) — fs(uy—1,up)



Matrix reformulation using Hadamard products

Hadamard product of two matrices Ao B
Au ... Ay, Bii ... B, AiBy1 ... AyBi,

o) . o g

A ... A B, ... Bun A,B,i ... AuBn,

Rewrite an N-point (periodic) finite volume scheme as

u; Fio—Fin
d |u

h—
dt

TN

Fo3—F21
. =0, Fij = fs(u;,u;j).

uy Fyi—FynNn_1



Matrix reformulation using Hadamard products

Hadamard product of two matrices Ao B

Ain ... Ay (B ... By A;Bin ... ApBi,
: ool e | = : B :
A ... A B, ... Bu AnBn ... ABpy
Rewrite an N-point (periodic) finite volume scheme as
Fio—Fin 0 1 =]l
F2’3 - F271 _1 0 1 .7

Fnvi—Fyn_1 1 -1 0



Matrix reformulation using Hadamard products

Hadamard product of two matrices Ao B

Au ... Ay, Bii ... B, AiBy1 ... AyBi,
: C o 0 . | = ; : :

A ... A B, ... Bun A,B,i ... AuBn,

Rewrite an N-point (periodic) finite volume scheme as

Fio—Fin 0 1 —1
F171 .. Fl,N
Fos3 —Fa; -1 0 1 -

' ' Fyi ... F
Fyvi—Fyn—1 1 -1 0 M i




Matrix reformulation using Hadamard products

Hadamard product of two matrices Ao B

Au ... Ay, Bi1 ... B, AiBy1 ... AyBi,
: C o 0 . | = ; : :

A ... A B, ... Bun A,B,i ... AuBn,

Rewrite an N-point (periodic) finite volume scheme as

Fio—Fin

Fos — F
S T P Y

Fyi—FnnNn_1



Interpretation using finite difference matrices

e Let M = hl. Can reformulate an entropy conservative finite
volume method as

du 11—-1 0 1
MZ+2(QoF)1=0, Q=3 o



Interpretation using finite difference matrices

e Let M = hl. Can reformulate an entropy conservative finite

volume method as

du 11—-1 0 1
ME—FQ(QoF)l—O, 0—5 S

e Generalizable: can show entropy conservation for any matrix
which satisfies Q = —Q” and Q1 = 0!



Interpretation using finite difference matrices

e Let M = hl. Can reformulate an entropy conservative finite
volume method as

du 11—-1 0 1
ME—FQ(QoF)l—O, Q=§

e Generalizable: can show entropy conservation for any matrix

which satisfies Q = —Q” and Q1 = 0!

e Note: M~!Q is a 2nd order (periodic) differentiation matrix.



Boundary conditions and summation-by-parts (SBP) property

Boundary conditions: choose appropriate “ghost” values u;, uﬁ

0 fs(ui, up) — f(u)
MY £ 2(QoF)1+B 0 —0.

dt I
fS(uNuuN) - f(uN)
Entropy stable if Q satisfies a summation-by-parts (SBP) property
-1 1 0 —1

1
S , Q+Q"=B-=



Main innovation: fully algebraic proof of entropy stability

e Discrete analogue of the entropy identity

/1 UTaf(u) _ T

’1 — VT(QQOF)].

———= = vl f(u) —yu)|_, =1"B (v f(u) — ¥(u))

-1 ox

Tadmor (1987), Carpenter et al. (2014), Gassner, Winters, and Kopriva (2016).



Main innovation: fully algebraic proof of entropy stability

e Discrete analogue of the entropy identity

bordf(u) B 1| <= v/ (2QoF)1
/v v -yl — 17B (v £(u) - $())

e Expand v’ (2Q o F) 1 using the SBP property Q + Q' =8B

-1 ox

v (2QoF)1

Tadmor (1987), Carpenter et al. (2014), Gassner, Winters, and Kopriva (2016).



Main innovation: fully algebraic proof of entropy stability

e Discrete analogue of the entropy identity

/1 UTaf(u) _ T

’1 — | vi(2QoF)1
! =1"B (v/ f(u) — ¢(u))

e Expand v’ (2Q o F) 1 using the SBP property Q + Q' =8B

B W—V F(u) —9(u)

v (Q-Q")oF)1+v' (BoF)1, (SBP property)

Tadmor (1987), Carpenter et al. (2014), Gassner, Winters, and Kopriva (2016).



Main innovation: fully algebraic proof of entropy stability

e Discrete analogue of the entropy identity

/1 UTaf(u) _ T

’1 — | vi(2QoF)1
! =1"B (v/ f(u) — ¢(u))

e Expand v’ (2Q o F) 1 using the SBP property Q + Q' =8B

B W—V F(u) —9(u)

vi ((Q-Q")oF)1+ v/ Bf(u), (consistency, B diag)

Tadmor (1987), Carpenter et al. (2014), Gassner, Winters, and Kopriva (2016).



Main innovation: fully algebraic proof of entropy stability

e Discrete analogue of the entropy identity

/1 UTaf(u) _ T

’1 — | vi(2QoF)1
! =1"B (v/ f(u) — ¢(u))

e Expand v’ (2Q o F) 1 using the SBP property Q + Q' =8B

B W—V F(u) —9(u)

vi ((Q-Q")oF)1+ v/ Bf(u), (consistency, B diag)

e Manipulate volume term using properties of Q and fs.

v (Q-QT)oF)1=3 Qi (vi —v))" fs (uj,uy)

ij

Tadmor (1987), Carpenter et al. (2014), Gassner, Winters, and Kopriva (2016).



Main innovation: fully algebraic proof of entropy stability

e Discrete analogue of the entropy identity

1 Taf( ) - 1 — VT(QQOF)I
[ = vl —17B (v £(u) - ¥(u)

e Expand v’ (2Q o F) 1 using the SBP property Q + Q' =8B

4 (Q- QT) oF)1+ v/Bf(u), (consistency, B diag)

e Manipulate volume term using properties of Q and fs.

((Q QT)OF I_ZQU / - (U/))

]

Tadmor (1987), Carpenter et al. (2014), Gassner, Winters, and Kopriva (2016).



Main innovation: fully algebraic proof of entropy stability

e Discrete analogue of the entropy identity

bordf(u) B 1| <= v/ (2QoF)1
/v v -yl — 17B (v £(u) - $())

e Expand v’ (2Q o F) 1 using the SBP property Q + Q' =8B

-1 ox

vi ((Q-Q")oF)1+ v/ Bf(u), (consistency, B diag)

e Manipulate volume term using properties of Q and fs.

vi(Q-Q") oF)1 =9(u)’Ql - 17Qy(u)

Tadmor (1987), Carpenter et al. (2014), Gassner, Winters, and Kopriva (2016).



Main innovation: fully algebraic proof of entropy stability

e Discrete analogue of the entropy identity

bordf(u) B 1| <= v/ (2QoF)1
/v v -yl — 17B (v £(u) - $())

e Expand v’ (2Q o F) 1 using the SBP property Q + Q' =8B

-1 ox

vi ((Q-Q")oF)1+ v/ Bf(u), (consistency, B diag)

e Manipulate volume term using properties of Q and fs.

vi(Q-QY) oF)1=y(u'Q1-1"Qy(u)
N’

=0

Tadmor (1987), Carpenter et al. (2014), Gassner, Winters, and Kopriva (2016).



Main innovation: fully algebraic proof of entropy stability

e Discrete analogue of the entropy identity

/1 UTaf(u) _ T

’1 — | vi(2QoF)1
! =1"B (v/ f(u) — ¢(u))

e Expand v’ (2Q o F) 1 using the SBP property Q + Q' =8B

B W—V F(u) —9(u)

vi ((Q-Q")oF)1+ v/ Bf(u), (consistency, B diag)

e Manipulate volume term using properties of Q and fs.

v ((Q-QF) oF)1=¢(u)TQl - 17Qi(u)
——
ad =—1"By(u)

Tadmor (1987), Carpenter et al. (2014), Gassner, Winters, and Kopriva (2016).



Main innovation: fully algebraic proof of entropy stability

e Discrete analogue of the entropy identity

/1 UTaf(u) _ T

’1 — | vi(2QoF)1
! =1"B (v/ f(u) — ¢(u))

e Expand v’ (2Q o F) 1 using the SBP property Q + Q' =8B

B W—V F(u) —9(u)

vi ((Q-Q")oF)1+ v/ Bf(u), (consistency, B diag)

e Manipulate volume term using properties of Q and fs.

v ((Q-QT)oF)1=-1"By(u)

Tadmor (1987), Carpenter et al. (2014), Gassner, Winters, and Kopriva (2016).



Entropy stable high order
summation by parts (SBP)
schemes




High order nodal differentiation matrices

e Nodal differentiation matrix D has zero row sums
J

e |l obatto quadrature nodes recover summation-by-parts
property! Let M = lumped diagonal mass matrix:



Entropy stable nodal DG: a brief summary

o If Q satisfies Q1 = 0 and the summation-by-parts (SBP)
property, then the DG formulation is entropy conservative

M%’ +2(QoF)1+B(fs(ut,u)—f(u)) =0
——
interface flux

Fisher and Carpenter (2014), Gassner, Winters, and Kopriva (2016), Chen and Shu (2017), etc.



Entropy stable nodal DG: a brief summary

o If Q satisfies Q1 = 0 and the summation-by-parts (SBP)
property, then the DG formulation is entropy conservative

Mj—:—FQ(QOF)l—FB(fs (ut,u) —f(u)) =0
——
interface flux

e Generalizes to arbitrarily high polynomial degree N.

Fisher and Carpenter (2014), Gassner, Winters, and Kopriva (2016), Chen and Shu (2017), etc.



Entropy stable nodal DG: a brief summary

o If Q satisfies Q1 = 0 and the summation-by-parts (SBP)
property, then the DG formulation is entropy conservative

Mj—ltj +2(QoF)1+B(fs(ut,u)—f(u)) =0
——
interface flux

e Generalizes to arbitrarily high polynomial degree N.
e Adding interface dissipation (e.g., Lax-Friedrichs) yields an
entropy stable DG scheme.

fs(ut,u) = fg (u,u) —%ﬂu]]n, 2> 0.

Fisher and Carpenter (2014), Gassner, Winters, and Kopriva (2016), Chen and Shu (2017), etc.



Entropy stable modal
discontinuous Galerkin
formulations




Why “modal’ formulations?

Nodal formulations: tied to a specific set of nodes.

“Modal” formulations: arbitrary basis functions and quadrature.

& A0
4 & A A

Basis functions g

Enables use of standard tools in finite elements.

Figures from http://www2.compute.dtu.dk/ apek/DGFEMCourse2009/Lecture05.pdf.



Why “modal’ formulations?

Nodal formulations: tied to a specific set of nodes.
“Modal” formulations: arbitrary basis functions and quadrature.

2
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Applicable for any type of reference element.

https://www.pointwise.com/news /2014 /Hybrid-Hex-Tet-Meshing-Latest-Pointwise-Release.html



Why “modal’ formulations?

Nodal formulations: tied to a specific set of nodes.

“Modal” formulations: arbitrary basis functions and quadrature.

POD “modes”

Full order solution

Projection-based reduced order models: learn basis functions from data.

Figure adapted from Brunton, Proctor, Kutz (2016), Discovering governing equations from data . ...



Why “modal’ formulations?

Nodal formulations: tied to a specific set of nodes.

“Modal” formulations: arbitrary basis functions and quadrature.

107!

1073

107°

L2 error

1077

107°

107! 10°
Mesh size h

Can avoid underintegration errors for nonlinear terms + curved elements.



Why “modal’ formulations?

Nodal formulations: tied to a specific set of nodes.

“Modal” formulations: arbitrary basis functions and quadrature.

Nodal formulations are great for conforming high order meshes. ..
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Nodal formulations: tied to a specific set of nodes.

”

Modal” formulations: arbitrary basis functions and quadrature.

‘“

. but modal formulations make non-conforming meshes simpler.
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Nodal formulations: tied to a specific set of nodes.

”

Modal” formulations: arbitrary basis functions and quadrature.

‘“

. but modal formulations make non-conforming meshes simpler.



Challenge 1 for modal formulations: entropy projection

e Test functions must be polynomial. Entropy variables are not.



Challenge 1 for modal formulations: entropy projection

e Test functions must be polynomial. Entropy variables are not.

o If uy is polynomial, testing with L? projection of entropy
variables IIyv (uy) recovers rate of change of entropy

duy T Quy / 9S(un)
I Cic A e ZENENT
/Dk N (un)” 5 /Dk vn) =) e

S (u)
ou



Challenge 1 for modal formulations: entropy projection

e Test functions must be polynomial. Entropy variables are not.

e If uy is polynomial, testing with L projection of entropy
variables IIyv (uy) recovers rate of change of entropy

duy T Quy / 9S(un)
I Cic A e ZENENT
/Dk N (un)” 5 /Dk vn) =) e

9S(u)
ou

e For consistency, must also evaluate fluxes using projected
entropy variables u = u (Ilyv (uy)).

(vi —vj)" fs (uiyuy) # (ui) = (uy) i vi # v (u).



lllustration of entropy projection: N = 3, 32 elements

—— Polynomial approximation
Exact

-10 -05 00 05 10
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141
175

140
150

139
125 138

137
100

—— Polynomial approximation 136
Exact Entropy variables
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lllustration of entropy projection: N = 3, 32 elements
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lllustration of entropy projection: N = 3, 32 elements

141
175
140 |
150
139
125 138 |
137
100
——— Polynomial approximation 136
Exact Entropy variables
075 |
-10 -05 00 05 10 -10 05 00 05 10
141
175
140
150
139
138 125
137
100
136 ntropy variables Polynomial approximation
rojected entropy variables -~ - Entropy projected
o075 b

-10 05 00 05 10 -10 05 00 05 10



Challenge 2 for modal formulations: interface coupling

Entropy stable interface coupling with/without boundary nodes

e Interface fluxes must be designed to cancel other boundary
terms in the discrete entropy balance.

e Entropy stable interface fluxes previously involved all-to-all

coupling between nodes on different elements.



Efficient interface fluxes via “hybridization”

T T - T T T T

2+ Orig H 100 | |

| 1072 s -

—O— Orig
—3— New
10~* & w s

=2

(a) Approximated derivatives  (b) L? error, degree N = 1,...,15

e Avoid coupling by adding correction terms akin to
“Ef(u) — f(Eu)", where E is a face extrapolation matrix.



Efficient interface fluxes via “hybridization”

T T - T T T T

2+ Orig H 100 | |

| 1072 s -

—O— Orig
—3— New
10~* & w s

=2

(a) Approximated derivatives  (b) L? error, degree N = 1,...,15

e Avoid coupling by adding correction terms akin to
“Ef(u) — f(Eu)", where E is a face extrapolation matrix.

e Interpret as a Hadamard product + hybridized SBP operator.

r
V,
Vv/' Q/1

1 -Q" E™B %)
Q=199 , =M
2 —BE B oz




Entropy stable schemes using hybridized SBP operators

e Replace SBP operator with hybridized SBP operator

d
Md—lt‘JrQ(QoF)lJrB(f*—f(u)):O.

Chan (2019). Skew-symmetric entropy stable modal discontinuous Galerkin formulations.

Chan (2018). On discretely entropy conservative and entropy stable discontinuous Galerkin methods.



Entropy stable schemes using hybridized SBP operators

e Replace SBP operator with hybridized SBP operator

M@Jrz Va

(QnoF)1+VIB(f* — = 0.
T v, (QroF)1+V;B( f(u)

Chan (2019). Skew-symmetric entropy stable modal discontinuous Galerkin formulations.

Chan (2018). On discretely entropy conservative and entropy stable discontinuous Galerkin methods.



Entropy stable schemes using hybridized SBP operators

e Replace SBP operator with hybridized SBP operator

M@Jrz Va

(QnoF)1+VIB(f* — =0.
T v, (QroF)1+V;B( f(u)

e F is the matrix of flux evaluations using solution values at

both volume and face nodes + entropy projection:

Fij = fs(u;,u;),  u= evaluate u (IIyv(u)).

Chan (2019). Skew-symmetric entropy stable modal discontinuous Galerkin formulations.

Chan (2018). On discretely entropy conservative and entropy stable discontinuous Galerkin methods.



Entropy stable schemes using hybridized SBP operators

e Replace SBP operator with hybridized SBP operator

du
M— +2
dt +

V,

v.| (QuoF)1+ViB(f - f(u))=0.
f

e F is the matrix of flux evaluations using solution values at

both volume and face nodes + entropy projection:
Fi; = fs(uj,u;), u = evaluate u (IIyv(u)).

e Entropy stability if Q;1 = 0 + a weak SBP condition related
to quadrature accuracy.

Q+Q" =ETBE — Q’1—E’B1 (weaker conditions)

Chan (2019). Skew-symmetric entropy stable modal discontinuous Galerkin formulations.

Chan (2018). On discretely entropy conservative and entropy stable discontinuous Galerkin methods.



Example: triangular and tetrahedral meshes

e Degree N polynomial approximation + degree > 2N

volume/face quadratures.

e Uniform 32 x 32 mesh: degree N =3, CFL .125,
Lax-Friedrichs flux penalization.

Results computed on larger periodic domain (“natural” boundary conditions unstable).



Example: entropy stable Gauss collocation on quad/hex

meshes (with MH Carpenter + DCDR Fernandez)

s o o oblo o o ob
[=No) o o o 0o o o on
(=No) ) o o 0o @) O oo
tg g ¢ ofeg g 2 o

e Hex or quad elements: tensor product polynomial basis
e Tensor product (/N + 1)-point Gauss quadrature for integrals.

e Simplifies to a collocation scheme, Kronecker product reduces
flux evaluations from O(N%) to O(N?) in 3D.



Example: entropy stable Gauss collocation on quad/hex

meshes (with MH Carpenter + DCDR Fernandez)
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e Hex or quad elements: tensor product polynomial basis
e Tensor product (/N + 1)-point Gauss quadrature for integrals.

e Simplifies to a collocation scheme, Kronecker product reduces
flux evaluations from O(N%) to O(N?) in 3D.
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e Hex or quad elements: tensor product polynomial basis
e Tensor product (/N + 1)-point Gauss quadrature for integrals.

e Simplifies to a collocation scheme, Kronecker product reduces
flux evaluations from O(N%) to O(N?) in 3D.



Example: entropy stable Gauss collocation on quad/hex

meshes (with MH Carpenter + DCDR Fernandez)
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e Hex or quad elements: tensor product polynomial basis
e Tensor product (/N + 1)-point Gauss quadrature for integrals.

e Simplifies to a collocation scheme, Kronecker product reduces
flux evaluations from O(N%) to O(N?) in 3D.



Shock vortex interaction

(a) Entropy conservative flux, T' = .3 (b) Entropy conservative flux, 7' = .7

Figure 1: Shock vortex interaction problem using high order entropy
stable Gauss collocation schemes with N =4, h = 1/100.

Winters, Derigs, Gassner, and Walch (2017). A uniquely defined entropy stable matrix dissipation
operator for high Mach number ideal MHD and compressible Euler simulations.



Shock vortex interaction

(a) With entropy dissipation, "= .3  (b) With entropy dissipation, T' = .7

Figure 1: Shock vortex interaction problem using high order entropy
stable Gauss collocation schemes with N =4, h = 1/100.

Winters, Derigs, Gassner, and Walch (2017). A uniquely defined entropy stable matrix dissipation
operator for high Mach number ideal MHD and compressible Euler simulations.



Shock vortex interaction
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(a) With entropy dissipation, T'=.3  (b) With entropy dissipation, 7' = .7

Figure 1: Shock vortex interaction problem using high order entropy
stable Gauss collocation schemes with N =4, h = 1/100.

Winters, Derigs, Gassner, and Walch (2017). A uniquely defined entropy stable matrix dissipation
operator for high Mach number ideal MHD and compressible Euler simulations.



Curved meshes are required for high order accuracy

(a) Straight-sided mesh (b) Curved mesh

High order numerical simulations using straight-sided and curved
geometry representations.

Remacle, Lambrechts, Geuzaine, Toulorge (2014). Optimizing the geometrical accuracy of 2D
curvilinear meshes.



Gauss quadrature improves errors on curved meshes
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Figure 2: L2 errors for 2D isentropic vortex at time T' = 5 for degree
N =2,...,7 Lobatto and Gauss collocation schemes.



Gauss quadrature improves errors on curved meshes
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Figure 2: L2 errors for 2D isentropic vortex at time T' = 5 for degree
N =2,...,7 Lobatto and Gauss collocation schemes.
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Figure 2: L2 errors for 2D isentropic vortex at time T' = 5 for degree
N =2,...,7 Lobatto and Gauss collocation schemes.



Gauss quadrature improves errors on curved meshes
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Figure 2: L2 errors for 2D isentropic vortex at time T' = 5 for degree
N =2,...,7 Lobatto and Gauss collocation schemes.



Applications of modal DG formulations

e Tri and tet meshes (Chan 2018 + Chan, Wilcox 2019)

e Collocation methods on quad/hex meshes (Chan, Fernandez,
Carpenter 2019)

e Hybrid meshes (Chan 2019)

e Shallow water (Wu, Kubatko, Chan 2019 + Wu, Chan 2020)
e Reduced order modeling (Chan 2020)

e Non-conforming meshes (Chan, Bencomo, Fernandez 2020)

e Jacobian matrices, time-implicit solvers (Chan, Taylor 2020)

e Viscous compressible flow (Chan, Lin, Warburton 2020)



Some recent work




Some recent work

Non-conforming meshes (with M.
Bencomo, D. Del Rey Fernandez)



Non-conforming meshes
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Non-conforming meshes
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(a) Conforming surface nodes (b) Non-conforming nodes

e Volume and surface nodes coupled thru fs(u;,u;) and stencil
of interpolation operator E.



Non-conforming meshes
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(a) Conforming surface nodes (b) Non-conforming nodes

e Volume and surface nodes coupled thru fs(u;,u;) and stencil
of interpolation operator E.

e Fix: use a mortar for non-conforming couplings.



A mortar-based hybridized SBP operator
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e Define transfer operators E,,,, E,, between conforming and
non-conforming (mortar) nodes.

e Modify the hybridized SBP volume term:

Z IT Qi_QiT E'B; oF; |1
~ |E -B,E B '
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e Define transfer operators E,,,, E,, between conforming and
non-conforming (mortar) nodes.

e Modify the hybridized SBP volume term:
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A mortar-based hybridized SBP operator
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e Define transfer operators E,,,, E,, between conforming and
non-conforming (mortar) nodes.

e Modify the hybridized SBP volume term:

T
P Q -Q/ E’B;

Y| E ~B,E BE, | oF; |1
=1 E///E *B/Em B’L



An efficient mortar reformulation
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(a) Mortar operators (b) Volume/surface/mortar coupling
d T
du | i T o
=1

f/ = Em (f: - .fz(u>) + (Em o Fi,sm) 1- Em (Em o Fi,ms) 1

Reformulate as an entropy stable correction to the numerical flux.



Numerical results: non-conforming meshes
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Convergence rate is lower if under-integrated: Lobatto rates are
O(h"N) while Gauss rates are O(hV+1).

Chan (2019). Skew-symmetric entropy stable modal discontinuous Galerkin formulations.

Chan, Bencomo, Del Rey Fernandez (2020). Mortar-based entropy stable discontinuous Galerkin
methods on non-conforming quadrilateral and hexahedral meshes.



Numerical results: non-conforming meshes
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Convergence rate is lower if under-integrated: Lobatto rates are
O(h"N) while Gauss rates are O(hV+1).

Chan (2019). Skew-symmetric entropy stable modal discontinuous Galerkin formulations.

Chan, Bencomo, Del Rey Fernandez (2020). Mortar-based entropy stable discontinuous Galerkin
methods on non-conforming quadrilateral and hexahedral meshes.



Some recent work

Efficient computation of Jacobian
matrices (with C. Taylor)



Current methods for computing Jacobian matrices

e Compute entries using
automatic differentiation (AD)

e Graph coloring reduces AD
costs, but only for sparse
matrices

e In general, cost of AD scales
with input and output

- = dimensions.

Figure from Gebremedhin, Manne, Pothen
(2005), What color is your Jacobian? Graph
coloring for computing derivatives.



Jacobian matrices for flux differencing

Hadamard product structure yields simple Jacobians.
Theorem

Assume Q = +Q”. Consider a scalar “collocation” discretization
r(u) = (QoF)1, Fij = fs(u;, uy).

The Jacobian matrix is then

% =S (Q o 8FR) == dlag (].T (Q o aFR)) )
_ 9fs(ur, ur)
(aFR)z‘j - Oup

ui,u]-



Observations about flux differencing Jacobian formulas

Separates “template” matrix Q and flux contributions.

dr

15 = (Qo0FR) £ diag (17 (Q o 6FR)),

— AD is efficient. In Julia:

using ForwardDiff
f(uL,uR) = (1/6)*(uL"2 + uL*uR + uR"2)

dF (uL,uR) = ForwardDiff.derivative (uR->f (ulL,uR), uR)



Computational timings

Jacobian timings for fs(ur,ur) = § (u? +urup + u%) and dense

differentiation matrices Q € RV*NV,

N=10 N=25 N =050

Direct automatic differentiation 5.666  60.388 373.633

FiniteDiff.jl 1.429 17.324  125.894
Jacobian formula (analytic deriv.)  .209 1.005 3.249
Jacobian formula (AD flux deriv.)  .210 1.030 3.259
Evaluation of f(u) (reference) 120 623 2.403




Implicit midpoint method for compressible Euler

(a) Uniform, L? error .0901 (b) Anisotropic, L? error .0935

Figure 3: Solutions for a degree N = 3 modal DG method with dt = .1
on uniform and “squeezed’ meshes.



Some recent work

Compressible Navier-Stokes (with Y. Lin,
T. Warburton)



Compressible Navier-Stokes: discretization of viscous terms

Compressible Navier-Stokes equations: inviscid fluxes f;(u) and
viscous fluxes g;(u)

du = O0fi(u) = 9gi(u)

TP D i By

i= i=1

Symmetrize viscous terms by transforming to entropy variables v ()

d

d
0gi(u) 0 ov
§ — E K.. K..>0.
o0x; ox; ( K (’U) 8.%]) ’ = 0

i=1 ij=1

Hughes, Franca, Mallet (1986). A new finite element formulation for CFD: |. Symmetric forms of the
compressible Euler and Navier-Stokes equations and the second law of thermodynamics.



DG formulation and boundary conditions

Write viscous terms as a first order system

_ Ov

0O,

d

oi=) Kij(v);
j=1
d

80'1'
Gvisc = Z Bz
=il

Entropy dissipative if discretized with standard DG techniques and
we

e impose BCs on u, entropy variables v, and o.

e get exactly entropy conservative BCs for no-slip adiabatic and
symmetry walls, entropy mimetic for no-slip isothermal.



Verification of entropy conservation/dissipation

b

(a) Adiabatic lid-driven cavity,
Ma = .1, Re = 1000

1.0

—— With viscous penalization
— — Without viscous penalization

0.2 0.4 0.6 0.8 1
Time

(b) Viscous entropy dissipation



Verification of entropy conservation/dissipation

0.2
0.1
0.1

(c) Wall/sym. BCs, Ma = 1.5, Re = 100
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(e) Wall/sym. BCs, Ma = 1.5, Re = 1000
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(d) Entropy dissipation
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(f) Entropy dissipation



Flow over a square cylinder

(a) Mesh (b) Zoom of p at Thnar = 100

Figure 4: Mesh and density p at Txna = 100 for Re = 104, Ma = 1.5,
and a degree N = 3 approximation.

40 /41



Summary and future work

This work is supported by the NSF under awards
DMS-1719818, DMS-1712639, and DMS-CAREER-1943186.

Thank you! Questions?

Chan, Lin, Warburton (2020). Entropy stable modal discontinuous Galerkin schemes and wall
boundary conditions for the compressible Navier-Stokes equation.

Chan, Taylor (2020). Efficient computation of Jacobian matrices for ES SBP schemes.

Chan, Bencomo, Del Rey Fernandez (2020). Mortar-based entropy-stable discontinuous Galerkin
methods on non-conforming quadrilateral and hexahedral meshes.

Chan, Del Rey Fernandez, Carpenter (2018). Efficient entropy stable Gauss collocation methods.

Chan (2018). On discretely entropy conservative and entropy stable discontinuous Galerkin methods.
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1D Sod shock tube

e Circles are cell averages, CFL of .125, LSRK-45 time-stepping.
e Comparison between (N + 1)-point Lobatto and
(N + 2)-point Gauss.

1.2
---Density
- -Pressure
1 -0—0—0—0—0—0—0—0 . —Reference
0.8
0.6
0.4
0.2
0
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

N =4,K =32, (N + 1) point Lobatto quadrature.



1D Sod shock tube

e Circles are cell averages, CFL of .125, LSRK-45 time-stepping.
e Comparison between (N + 1)-point Lobatto and
(N + 2)-point Gauss.

1.2
---Density
- -Pressure
1 -0—0—0—0—0—0—0—0= . —Reference
0.8
0.6
0.4
0.2
0
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

N =4,K =32, (N + 2) point Gauss quadrature.



1D sine-shock interaction

e (N + 2)-point Gauss, smaller CFL (.05 vs .125) for stability.

---Density
—Reference;
2
i
1 W\o\oﬂ
il
0
-5 -4 -3 -2 -1 0 1 2 3 4 5

N =4,K =40,CFL = .05, (N + 1) point Lobatto quadrature.



1D sine-shock interaction

e (N + 2)-point Gauss, smaller CFL (.05 vs .125) for stability.

---Density
—Reference;

0
-5 -4 -3 -2 -1 0 1 2 3 4 5

N =4, K =40,CFL = .05, (N + 2) point Gauss quadrature.



Loss of control with the entropy projection

e For (N + 1)-point Lobatto, w = u at nodal points.

e For (N + 2)-point Gauss, discrepancy between v(w) and
projection on the boundary of elements.

e Still need positivity of thermodynamic quantities for stability!

—_V, —— Density (original)

3
20 - - Density (projected entropy variables)

- - Projected v,




Taylor-Green vortex

Figure 5: Isocontours of z-vorticity for Taylor-Green at ¢t = 0, 10 seconds.

e Simple turbulence-like behavior (generation of small scales).

e Inviscid Taylor-Green: tests robustness w.r.t. under-resolved
solutions.

https://how4.cenaero.be/content/bsl-dns-taylor-green-vortex-rel600.


https://how4.cenaero.be/content/bs1-dns-taylor-green-vortex-re1600

3D inviscid Taylor-Green vortex

- — - Curved

Affine

Affine

- — - Curved

1072
1.5 F
1 -
0.5
0 [T |
0 10
Time ¢

(a) GLL collocation
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(b) Gauss collocation

Figure 6: Kinetic energy dissipation rate for entropy stable GLL and

Gauss collocation schemes with N =7 and h = 7/8.
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