Weight-adjusted Bernstein-Bezier DG methods for wave propagation in heterogeneous media

Jesse Chan, Kaihang Guo

Department of Computational and Applied Mathematics, Rice University

SIAM LA-TX Sectional conference

- Unstructured (tetrahedral) meshes for geometric flexibility.
- High order: low numerical dissipation and dispersion.
- High order approximations: more accurate per unknown
- Explicit time stepping: high performance on many-core.

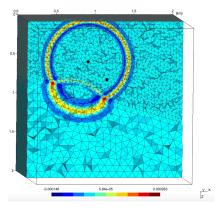
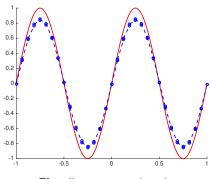


Figure courtesy of Axel Modave.

2/26

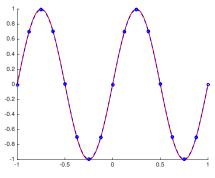
- Unstructured (tetrahedral) meshes for geometric flexibility.
- High order: low numerical dissipation and dispersion.
- High order approximations: more accurate per unknown
- Explicit time stepping: high performance on many-core.



Fine linear approximation.

2/26

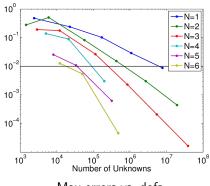
- Unstructured (tetrahedral) meshes for geometric flexibility.
- High order: low numerical dissipation and dispersion.
- High order approximations: more accurate per unknown
- Explicit time stepping: high performance on many-core.



Coarse quadratic approximation.

2/26

- Unstructured (tetrahedral) meshes for geometric flexibility.
- High order: low numerical dissipation and dispersion.
- High order approximations: more accurate per unknown.
- Explicit time stepping: high performance on many-core.



Max errors vs. dofs.

- Unstructured (tetrahedral) meshes for geometric flexibility.
- High order: low numerical dissipation and dispersion.
- High order approximations: more accurate per unknown.
- Explicit time stepping: high performance on many-core.

Graphics processing units (GPU).

2/26

- Unstructured (tetrahedral) meshes for geometric flexibility.
- High order: low numerical dissipation and dispersion.
- High order approximations: more accurate per unknown.
- Explicit time stepping: high performance on many-core.

Graphics processing units (GPU).

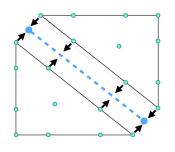
2/26

Time-domain nodal DG methods

Assume $u(\mathbf{x},t) = \sum \mathbf{u}_j \phi_j(\mathbf{x})$ on D^k

- Compute numerical flux at face nodes (non-local).
- Compute RHS of (local) ODE.
- Evolve (local) solution using explicit time integration (RK, AB, etc).

$$\frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t} = \mathbf{D}_{x}\mathbf{u} + \sum_{\mathsf{faces}} \mathbf{L}_{f}\left(\mathsf{flux}\right).$$



$$\mathbf{M}_{ij} = \int_{D^k} \phi_j(\mathbf{x}) \phi_i(\mathbf{x})$$

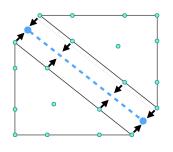
 $\mathbf{L}_f = \mathbf{M}^{-1} \mathbf{M}_f.$

Time-domain nodal DG methods

Assume $u(\mathbf{x},t) = \sum \mathbf{u}_j \phi_j(\mathbf{x})$ on D^k

- Compute numerical flux at face nodes (non-local).
- Compute RHS of (local) ODE.
- Evolve (local) solution using explicit time integration (RK, AB, etc).

$$\frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t} = \underbrace{\mathbf{D}_{x}\mathbf{u}}_{\text{Volume kernel}} + \underbrace{\sum_{\text{faces}} \mathbf{L}_{f} \left(\text{flux}\right)}_{\text{Surface kernel}}.$$

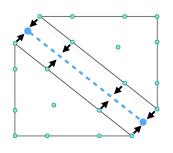


$$egin{aligned} \mathbf{M}_{ij} &= \int_{D^k} \phi_j(\mathbf{x}) \phi_i(\mathbf{x}) \ \mathbf{L}_f &= \mathbf{M}^{-1} \mathbf{M}_f. \end{aligned}$$

Time-domain nodal DG methods

Assume $u(\mathbf{x},t) = \sum \mathbf{u}_j \phi_j(\mathbf{x})$ on D^k

- Compute numerical flux at face nodes (non-local).
- Compute RHS of (local) ODE.
- Evolve (local) solution using explicit time integration (RK, AB, etc).



$$\frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t} = \mathbf{D}_{x}\mathbf{u} + \sum_{\mathsf{faces}} \mathbf{L}_{f}\left(\mathsf{flux}\right).$$
Update kernel

$$\mathbf{M}_{ij} = \int_{D^k} \phi_j(\mathbf{x}) \phi_i(\mathbf{x})$$

 $\mathbf{L}_f = \mathbf{M}^{-1} \mathbf{M}_f.$

Outline

1 Weight-adjusted DG (WADG): high order heterogeneous media

2 Bernstein-Bezier WADG: high order efficiency

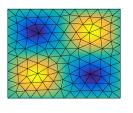
Chan, Guo (CAAM) BBWADG October 6-7, 2018

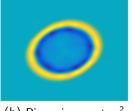
Outline

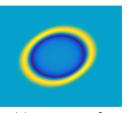
Weight-adjusted DG (WADG): high order heterogeneous media

2 Bernstein-Bezier WADG: high order efficiency

High order approximation of media and geometry







(a) Mesh and exact c^2 (b) Piecewise const. c^2 (c) High order c^2

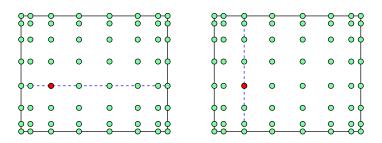
■ Piecewise const. c^2 : energy stable and efficient, but inaccurate.

$$\frac{1}{c^2(\mathbf{x})}\frac{\partial p}{\partial t} + \nabla \cdot \mathbf{u} = 0, \qquad \frac{\partial \mathbf{u}}{\partial t} + \nabla p = 0.$$

■ High order wavespeeds: weighted mass matrices. Stable, but requires pre-computation/storage of inverses or factorizations!

$$oldsymbol{M}_{1/c^2}rac{\mathrm{d}oldsymbol{p}}{\mathrm{d}t}=oldsymbol{A}_holdsymbol{U}, \qquad \left(oldsymbol{M}_{1/c^2}
ight)_{ij}=\int_{D^k}rac{1}{c^2(oldsymbol{x})}\phi_i(oldsymbol{x})\phi_i(oldsymbol{x}).$$

Existing approaches: mass lumping



- DG-SEM: collocate at Gauss-Lobatto (or Gauss) points for a diagonal mass matrix. $O(N^4)$ total cost in 3D using Kronecker product.
- Limited to polynomial quads/hexes! Loss of stability or accuracy when extending to simplices (or prisms, pyramids, or non-polynomials).

Chan, Evans (2018). Multi-patch DG-IGA for wave propagation: explicit time-stepping and efficient mass matrix inversion.

Banks. Hagstrom (2016). On Galerkin difference methods.

Weight-adjusted DG: stable, accurate, non-invasive

■ Weight-adjusted DG (WADG): energy stable approx. of M_{1/c^2}

$$\mathbf{M}_{1/c^2} rac{\mathrm{d} \mathbf{p}}{\mathrm{d} t} pprox \mathbf{M} \left(\mathbf{M}_{c^2}
ight)^{-1} \mathbf{M} rac{\mathrm{d} \mathbf{p}}{\mathrm{d} t} = \mathbf{A}_h \mathbf{U}.$$

■ New evaluation reuses implementation for constant wavespeed

$$\frac{\mathrm{d} \boldsymbol{p}}{\mathrm{d} t} = \underbrace{\boldsymbol{M}^{-1}(\boldsymbol{M}_{c^2})}_{\text{modified update}} \underbrace{\boldsymbol{M}^{-1}\boldsymbol{A}_h\boldsymbol{U}}_{\text{constant wavespeed RHS}}$$

■ Low storage matrix-free application of $M^{-1}M_{c^2}$ using quadrature-based interpolation and L^2 projection matrices V_q , P_q .

$$(\mathbf{M})^{-1} \mathbf{M}_{c^2} \mathsf{RHS} = \underbrace{\mathbf{M}^{-1} \mathbf{V}_q^T W}_{\mathbf{P}_q} \operatorname{diag}(c^2) \mathbf{V}_q(\mathsf{RHS}).$$

Chan, Hewett, Warburton (2016). Weight-adjusted DG methods: wave propagation in heterogeneous media.

A weight-adjusted L^2 inner product

- "Reverse numerical integration": all operations on reference element.
- Let $T_w u = P_N(wu)$, define $T_w^{-1}: P^N \to P^N$ as

$$(wT_w^{-1}u,v)=(u,v), \qquad \forall v\in P^N.$$

- T_w^{-1} is "inverse" of weighted projection: $T_w T_w^{-1} = T_w^{-1} T_w = P_N$
- Weight-adjusted mass matrix: replace weighted L^2 inner product with "inverse of inverse weighting operator"

$$(wu, v) \implies (T_{1/w}^{-1}u, v).$$

Koutschan, Lehrenfeld, Schöberl (2011). Computer algebra meets FE: an efficient implementation for Maxwell's equations.

7/26

■ Generates norm with same equivalence constants

$$w_{\min} \boldsymbol{u}^T \boldsymbol{M} \boldsymbol{u} \leq \boldsymbol{u}^T \boldsymbol{M}_w \boldsymbol{u} \leq w_{\max} \boldsymbol{u}^T \boldsymbol{M} \boldsymbol{u}$$

lacktriangle Accuracy of weighted "projection" P_w vs. WADG "projection" \widetilde{P}_w

$$\left\| u/w - \widetilde{P}_{w}u \right\|_{L^{2}} \le C_{w}h^{N+1} \|w\|_{W^{N+1,\infty}} \|u\|_{W^{N+1,2}}$$
$$\left\| P_{w}u - \widetilde{P}_{w}u \right\|_{L^{2}} \le C_{w,N}h^{N+2} \|w\|_{W^{N+1,\infty}} \|u\|_{W^{N+1,2}}$$

■ WADG retains high order accuracy for moments: if $v \in P^M$

$$\left| \mathbf{v}^{T} \mathbf{M}_{w} \mathbf{u} - \mathbf{v}^{T} \mathbf{M} \mathbf{M}_{1/w}^{-1} \mathbf{M} \mathbf{u} \right| \le$$

$$C_{w} h^{2N+2-M} \left\| w \right\|_{W^{N+1,\infty}} \left\| u \right\|_{W^{N+1,2}} \left\| v \right\|_{L^{2}}$$

8 / 26

Generates norm with same equivalence constants

$$w_{\min} \boldsymbol{u}^T \boldsymbol{M} \boldsymbol{u} \leq \boldsymbol{u}^T \boldsymbol{M} \boldsymbol{M}_{1/w}^{-1} \boldsymbol{M} \boldsymbol{u} \leq w_{\max} \boldsymbol{u}^T \boldsymbol{M} \boldsymbol{u}$$

 \blacksquare Accuracy of weighted "projection" P_w vs. WADG "projection" \widetilde{P}_w

$$\left\| u/w - \widetilde{P}_{w}u \right\|_{L^{2}} \le C_{w}h^{N+1} \|w\|_{W^{N+1,\infty}} \|u\|_{W^{N+1,2}}$$
$$\left\| P_{w}u - \widetilde{P}_{w}u \right\|_{L^{2}} \le C_{w,N}h^{N+2} \|w\|_{W^{N+1,\infty}} \|u\|_{W^{N+1,2}}$$

■ WADG retains high order accuracy for moments: if $v \in P^M$

$$\left| \mathbf{v}^{T} \mathbf{M}_{w} \mathbf{u} - \mathbf{v}^{T} \mathbf{M} \mathbf{M}_{1/w}^{-1} \mathbf{M} \mathbf{u} \right| \le$$

$$C_{w} h^{2N+2-M} \left\| w \right\|_{W^{N+1,\infty}} \left\| u \right\|_{W^{N+1,2}} \left\| v \right\|_{L^{2}}$$

8 / 26

■ Generates norm with same equivalence constants

$$w_{\min} \boldsymbol{u}^T \boldsymbol{M} \boldsymbol{u} \leq \boldsymbol{u}^T \boldsymbol{M} \boldsymbol{M}_{1/w}^{-1} \boldsymbol{M} \boldsymbol{u} \leq w_{\max} \boldsymbol{u}^T \boldsymbol{M} \boldsymbol{u}$$

lacktriangle Accuracy of weighted "projection" P_w vs. WADG "projection" \widetilde{P}_w

$$\left\| u/w - \widetilde{P}_{w}u \right\|_{L^{2}} \leq C_{w}h^{N+1} \|w\|_{W^{N+1,\infty}} \|u\|_{W^{N+1,2}}$$
$$\left\| P_{w}u - \widetilde{P}_{w}u \right\|_{L^{2}} \leq C_{w,N}h^{N+2} \|w\|_{W^{N+1,\infty}} \|u\|_{W^{N+1,2}}$$

■ WADG retains high order accuracy for moments: if $v \in P^M$

$$\left| \mathbf{v}^{T} \mathbf{M}_{w} \mathbf{u} - \mathbf{v}^{T} \mathbf{M} \mathbf{M}_{1/w}^{-1} \mathbf{M} \mathbf{u} \right| \le$$

$$C_{w} h^{2N+2-M} \left\| w \right\|_{W^{N+1,\infty}} \left\| u \right\|_{W^{N+1,2}} \left\| v \right\|_{L^{2}}$$

8 / 26

■ Generates norm with same equivalence constants

$$w_{\min} \boldsymbol{u}^T \boldsymbol{M} \boldsymbol{u} \leq \boldsymbol{u}^T \boldsymbol{M} \boldsymbol{M}_{1/w}^{-1} \boldsymbol{M} \boldsymbol{u} \leq w_{\max} \boldsymbol{u}^T \boldsymbol{M} \boldsymbol{u}$$

lacktriangle Accuracy of weighted "projection" P_w vs. WADG "projection" \widetilde{P}_w

$$\left\| u/w - \widetilde{P}_{w}u \right\|_{L^{2}} \leq C_{w}h^{N+1} \left\| w \right\|_{W^{N+1,\infty}} \left\| u \right\|_{W^{N+1,2}}$$
$$\left\| P_{w}u - \widetilde{P}_{w}u \right\|_{L^{2}} \leq C_{w,N}h^{N+2} \left\| w \right\|_{W^{N+1,\infty}} \left\| u \right\|_{W^{N+1,2}}$$

■ WADG retains high order accuracy for moments: if $v \in P^M$

$$\left| \mathbf{v}^{T} \mathbf{M}_{w} \mathbf{u} - \mathbf{v}^{T} \mathbf{M} \mathbf{M}_{1/w}^{-1} \mathbf{M} \mathbf{u} \right| \le C_{w} h^{2N+2-M} \left\| w \right\|_{W^{N+1,\infty}} \left\| u \right\|_{W^{N+1,2}} \left\| v \right\|_{L^{2}}$$

8 / 26

WADG: nearly identical to using M_{1/c^2}^{-1}

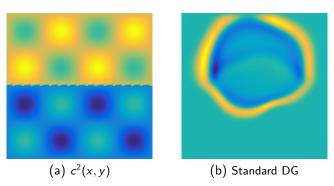


Figure: Standard vs. weight-adjusted DG with spatially varying c^2 .

■ Observed L^2 error is $O(h^{N+1})$; can prove $O(h^{N+1/2})$ convergence.

Chan, Guo (CAAM) BBWADG October 6-7, 2018

WADG: nearly identical to using M_{1/c^2}^{-1}

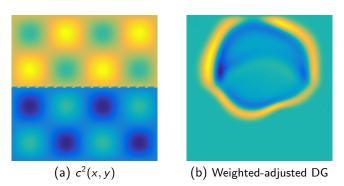


Figure: Standard vs. weight-adjusted DG with spatially varying c^2 .

■ Observed L^2 error is $O(h^{N+1})$; can prove $O(h^{N+1/2})$ convergence.

Chan, Guo (CAAM) BBWADG October 6-7, 2018

WADG: more efficient than storing M_{1/c^2}^{-1} on GPUs

	N = 1	N = 2	N = 3	N = 4	N = 5	N = 6	N = 7
$m{M}_{1/c^2}^{-1}$.66	2.79	9.90	29.4	73.9	170.5	329.4
WADG	0.59	1.44	4.30	13.9	43.0	107.8	227.7
Speedup	1.11	1.94	2.30	2.16	1.72	1.58	1.45

Time (ns) per element: storing/applying M_{1/c^2}^{-1} vs WADG (deg. 2N quadrature).

- Efficiency on GPUs: reduce memory accesses and data movement.
- lacktriangle (Tuned) low storage WADG faster than storing and applying $m{M}_{1/c^2}^{-1}$!

Chan, Guo (CAAM) BBWADG October 6-7, 2018

Matrix-valued weights and elastic wave propagation

■ Symmetric velocity-stress formulation (entries of A_i either ± 1 or 0)

$$\rho \frac{\partial \mathbf{v}}{\partial t} = \sum_{i=1}^{d} \mathbf{A}_{i}^{\mathsf{T}} \frac{\partial \boldsymbol{\sigma}}{\partial \mathbf{x}_{i}}, \qquad \mathbf{C}^{-1} \frac{\partial \boldsymbol{\sigma}}{\partial t} = \sum_{i=1}^{d} \mathbf{A}_{i} \frac{\partial \mathbf{v}}{\partial \mathbf{x}_{i}}.$$

■ DG formulation based on penalty fluxes, matrix-weighted mass matrix

$$m{M_{C^{-1}}} = \left(egin{array}{ccc} m{M}_{C_{11}^{-1}} & \dots & m{M}_{C_{1d}^{-1}} \\ dots & \ddots & dots \\ m{M}_{C_{d1}^{-1}} & \dots & m{M}_{C_{dd}^{-1}} \end{array}
ight)$$

lacktriangle Weight-adjusted approximation for $oldsymbol{\mathcal{C}}^{-1}$ decouples each component

$$\textbf{\textit{M}}_{\textbf{\textit{C}}^{-1}}^{-1} \approx \left(\textbf{\textit{I}} \otimes \textbf{\textit{M}}^{-1} \right) \textbf{\textit{M}}_{\textbf{\textit{C}}} \left(\textbf{\textit{I}} \otimes \textbf{\textit{M}}^{-1} \right).$$

11/26

Matrix-weighted WADG: elastic wave propagation

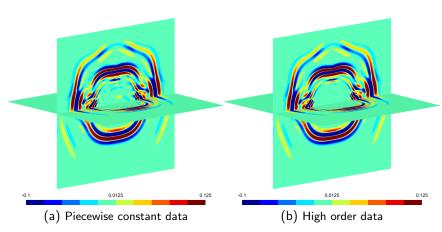


Figure: $\operatorname{tr}(\boldsymbol{\sigma})$ with $\mu(\boldsymbol{x}) = 1 + H(y) + \frac{1}{2}\cos(3\pi x)\cos(3\pi y)\cos(3\pi z)$, N = 5.

Chan, Guo (CAAM) BBWADG October 6-7, 2018

Energy stable acoustic-elastic coupling

$$oldsymbol{\sigma}, oldsymbol{v}$$
 (Elastic)

$$egin{aligned} oldsymbol{u} \cdot oldsymbol{n} &= oldsymbol{v} \cdot oldsymbol{n} \ oldsymbol{A}_n^T oldsymbol{\sigma} &= p oldsymbol{n} \end{aligned}$$

13 / 26

 $p, oldsymbol{u}$ (Acoustic)

Energy stable acoustic-elastic coupling

$$(\text{Elastic})$$

$$\frac{1}{2}\langle p\boldsymbol{n} - \boldsymbol{A}_{n}^{T}\boldsymbol{\sigma} - (\boldsymbol{I} - \boldsymbol{n}\boldsymbol{n}^{T})\boldsymbol{A}_{n}^{T}\boldsymbol{\sigma}, \boldsymbol{w} \rangle + \frac{\tau}{2}\langle (\boldsymbol{u} - \boldsymbol{v}) \cdot \boldsymbol{n}, \boldsymbol{w} \cdot \boldsymbol{n} \rangle$$

$$\frac{1}{2}\langle (\boldsymbol{u} - \boldsymbol{v}) \cdot \boldsymbol{n}, \boldsymbol{A}_{n}^{T}\boldsymbol{q} \rangle + \frac{\tau}{2}\langle (p\boldsymbol{n} - \boldsymbol{A}_{n}^{T}\boldsymbol{\sigma}), \boldsymbol{A}_{n}^{T}\boldsymbol{q} \rangle$$

$$\boldsymbol{u} \cdot \boldsymbol{n} = \boldsymbol{v} \cdot \boldsymbol{n}$$

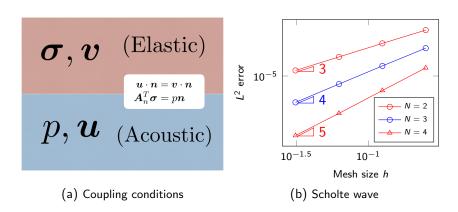
$$\boldsymbol{A}_{n}^{T}\boldsymbol{\sigma} = p\boldsymbol{n}$$

$$\frac{1}{2}\langle (\boldsymbol{A}_{n}^{T}\boldsymbol{\sigma} - p\boldsymbol{n}) \cdot \boldsymbol{n}, \boldsymbol{w} \cdot \boldsymbol{n} \rangle + \frac{\tau}{2}\langle (\boldsymbol{v} - \boldsymbol{u}) \cdot \boldsymbol{n}, \boldsymbol{w} \cdot \boldsymbol{n} \rangle$$

$$\frac{1}{2}\langle (\boldsymbol{v} - \boldsymbol{u}) \cdot \boldsymbol{n}, \boldsymbol{q} \rangle + \frac{\tau}{2}\langle (\boldsymbol{A}_{n}^{T}\boldsymbol{\sigma} - p\boldsymbol{n}) \cdot \boldsymbol{n}, \boldsymbol{q} \rangle$$

$$(\text{Acoustic})$$

Energy stable acoustic-elastic coupling



Straightforward penalty numerical fluxes in terms of interface residuals, energy stable and high order accurate for high order heterogeneous media.

Chan, Guo (CAAM) BBWADG October 6-7, 2018

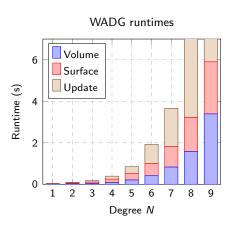
Outline

Weight-adjusted DG (WADG): high order heterogeneous media

2 Bernstein-Bezier WADG: high order efficiency

Computational costs at high orders of approximation

Problem: WADG at high orders becomes **expensive**!

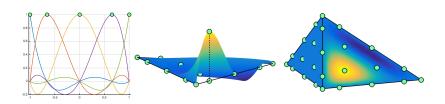


- Large **dense** matrices: $O(N^6)$ work per tet.
- High orders usually use tensor-product elements: $O(N^4)$ vs $O(N^6)$ cost, but less geometric flexibility.
- Idea: choose basis such that matrices are sparse.

14 / 26

WADG runtimes for 50 timesteps, 98304 elements.

- Nodal DG: $O(N^6)$ cost in 3D vs $O(N^3)$ degrees of freedom.
- Switch to Bernstein basis: sparse and structured matrices.
- lacktriangle Optimal $O(N^3)$ application of differentiation and lifting matrices



Nodal bases in one, two, and three dimensions.

Chan, Warburton 2015. GPU-accelerated Bernstein-Bezier discontinuous Galerkin methods for wave propagation (SISC).

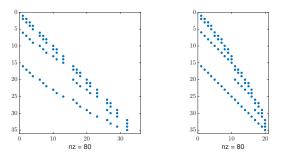
- Nodal DG: $O(N^6)$ cost in 3D vs $O(N^3)$ degrees of freedom.
- Switch to Bernstein basis: sparse and structured matrices.
- Optimal $O(N^3)$ application of differentiation and lifting matrices.



Bernstein bases in one, two, and three dimensions.

Chan, Warburton 2015. GPU-accelerated Bernstein-Bezier discontinuous Galerkin methods for wave propagation (SISC).

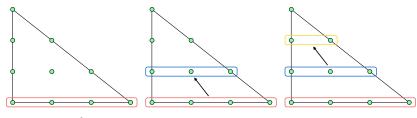
- Nodal DG: $O(N^6)$ cost in 3D vs $O(N^3)$ degrees of freedom.
- Switch to Bernstein basis: sparse and structured matrices.
- Optimal $O(N^3)$ application of differentiation and lifting matrices.



Tetrahedral Bernstein differentiation and degree elevation matrices.

Chan, Warburton 2015. GPU-accelerated Bernstein-Bezier discontinuous Galerkin methods for wave propagation (SISC).

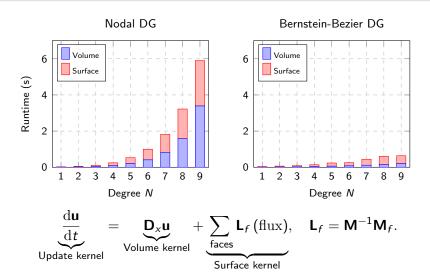
- Nodal DG: $O(N^6)$ cost in 3D vs $O(N^3)$ degrees of freedom.
- Switch to Bernstein basis: sparse and structured matrices.
- Optimal $O(N^3)$ application of differentiation and lifting matrices.



Optimal $O(N^3)$ complexity "slice-by-slice" application of Bernstein lift.

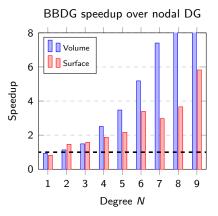
Chan, Warburton 2015. GPU-accelerated Bernstein-Bezier discontinuous Galerkin methods for wave propagation (SISC).

BBDG: efficient volume, surface kernels



Chan, Guo (CAAM) BBWADG

BBDG: efficient volume, surface kernels



$$\underbrace{\frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t}}_{\text{Update kernel}} = \underbrace{\mathbf{D}_{\mathbf{x}}\mathbf{u}}_{\text{Volume kernel}} + \underbrace{\sum_{\text{faces}}\mathbf{L}_f\left(\mathrm{flux}\right)}_{\text{Surface kernel}}, \quad \mathbf{L}_f = \mathbf{M}^{-1}\mathbf{M}_f.$$

Chan, Guo (CAAM) BBWADG Octo

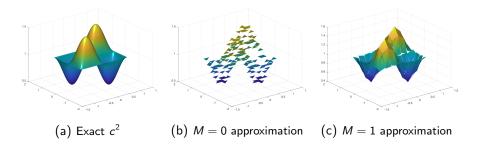
Goal: reduce computational complexity of WADG in 3D

- WADG: stable and accurate, but $O(N^6)$ operations per element.
- BBDG: fast $O(N^3)$ evaluation, but requires piecewise constant media
- Exploit continuous WADG approximation: given u(x), compute

$$P_N(u(\mathbf{x})w(\mathbf{x}))$$

Applying M_w^{-1} is always $O(N^6)$ per element, so explicit expression for WADG is a prerequisite for reducing complexity.

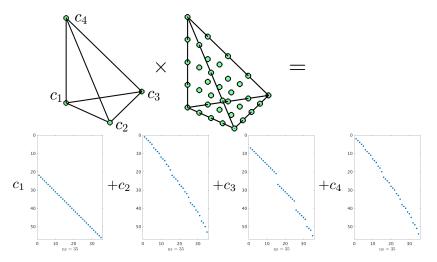
BBWADG: polynomial multiplication and projection



- $lacktriangleq O(N^6)$ update kernel: multiplication by matrices $oldsymbol{V}_q$ and $oldsymbol{P}_q$.
- New approach: approx. $c^2(x)$ with degree M polynomial, use fast Bernstein algorithms for polynomial multiplication and projection.
- WADG: can reuse fast Bernstein volume and surface kernels.

Chan, Guo (CAAM) BBWADG October 6-7, 2018

Fast Bernstein polynomial multiplication



Bernstein polynomial multiplication (M = 1 shown), $O(N^3)$ cost for fixed M.

Chan, Guo (CAAM) BBWADG October 6-7, 2018

Fast Bernstein polynomial projection

- Given $c^2(x)u(x)$ as a degree (N+M) polynomial, apply L^2 projection matrix P_N^{N+M} to reduce to degree N.
- Polynomial L^2 projection matrix P_N^{N+M} under Bernstein basis:

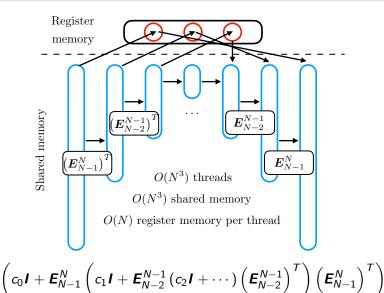
$$\boldsymbol{P}_{N}^{N+M} = \underbrace{\sum_{j=0}^{N} c_{j} \boldsymbol{E}_{N-j}^{N} \left(\boldsymbol{E}_{N-j}^{N}\right)^{T}}_{\widetilde{\boldsymbol{P}}_{N}} \left(\boldsymbol{E}_{N}^{N+M}\right)^{T}$$

• "Telescoping" form of \tilde{P}_N : $O(N^4)$ complexity, more GPU-friendly.

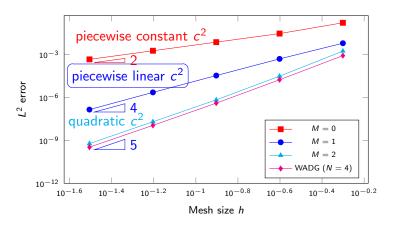
$$\left(c_0 \mathbf{I} + \mathbf{E}_{N-1}^{N} \left(c_1 \mathbf{I} + \mathbf{E}_{N-2}^{N-1} \left(c_2 \mathbf{I} + \cdots\right) \left(\mathbf{E}_{N-2}^{N-1}\right)^T\right) \left(\mathbf{E}_{N-1}^{N}\right)^T\right)$$

20 / 26

Sketch of GPU algorithm for \tilde{P}_N



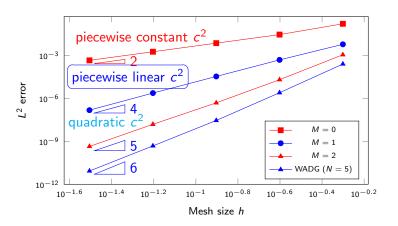
BBWADG: effect of approximating c^2 on accuracy



Approximating smooth $c^2(x)$ using L^2 projection: $O(h^2)$ for M=0, $O(h^4)$ for M=1, $O(h^{M+3})$ for $0 < M \le N-2$.

Chan, Guo (CAAM) BBWADG October 6-7, 2018

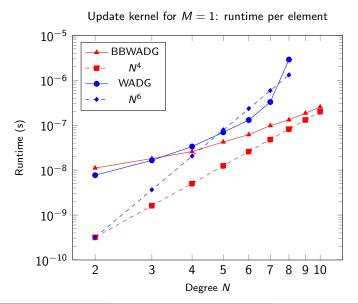
BBWADG: effect of approximating c^2 on accuracy



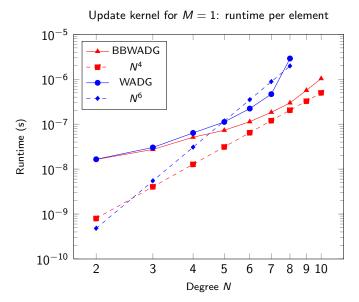
Approximating smooth $c^2(x)$ using L^2 projection: $O(h^2)$ for M=0, $O(h^4)$ for M=1, $O(h^{M+3})$ for $0 < M \le N-2$.

Chan, Guo (CAAM) BBWADG October 6-7, 2018

BBWADG: computational runtime (3D acoustics)



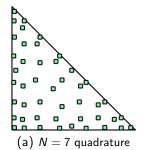
BBWADG: computational runtime (3D elasticity)

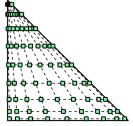


BBWADG: update kernel speedup (3D acoustics)

	N = 3	N = 4	N = 5	N = 6	N = 7	N = 8
WADG	1.65e-8	3.35e-8	6.94e-8	1.31e-7	3.28e-7	2.89e-6
BBWADG	1.81e-8	2.59e-8	4.22e-8	6.16e-8	9.79e-8	1.32e-7
Speedup	0.9116	1.2934	1.6445	2.1266	3.3504	21.8939

For $N \ge 8$, quadrature (and WADG) becomes much more expensive.





(b) N = 8 quadrature

Summary and acknowledgements

- Weight-adjusted DG: provable stability, high order accuracy, and efficiency in heterogeneous acoustic and elastic media.
- BBWADG: improved complexity for approximate wavespeeds.
- This work is supported by the National Science Foundation under DMS-1712639 and DMS-1719818.

Thank you! Questions?

Guo, Chan (2018). Bernstein-Bézier weight-adjusted DG methods for wave propagation in heterogeneous media. Chan (2018). Weight-adjusted DG methods: matrix-valued weights and elastic wave prop. in heterogeneous media. Chan, Hewett, Warburton (2017). Weight-adjusted DG methods: wave propagation in heterogeneous media. Chan, Warburton (2017). GPU-accelerated Bernstein-Bezier discontinuous Galerkin methods for wave propagation.