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High order DG methods for wave propagation

Unstructured (tetrahedral)
meshes for geometric flexibility.

High order: low numerical
dissipation and dispersion.

High order approximations:
more accurate per unknown.

Explicit time stepping: high
performance on many-core.

Figure courtesy of Axel Modave.�� ��Goal: accuracy and efficiency for heterogeneous media.
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Coarse quadratic approximation.
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Time-domain nodal DG methods

Assume u(x , t) =
∑

ujφj(x) on Dk

Compute numerical flux at face
nodes (non-local).

Compute RHS of (local) ODE.

Evolve (local) solution using explicit
time integration (RK, AB, etc).

du

dt
= Dxu +

∑

faces

Lf (flux) . Mij =

∫

Dk

φj(x)φi (x)

Lf = M−1Mf .
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Weight-adjusted DG (WADG): high order heterogeneous media

Outline
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Weight-adjusted DG (WADG): high order heterogeneous media

High order approximation of media and geometry

(a) Mesh and exact c2 (b) Piecewise const. c2 (c) High order c2

Piecewise const. c2: energy stable and efficient, but inaccurate.

1

c2(x)

∂p

∂t
+∇ · u = 0,

∂u
∂t

+∇p = 0.

High order wavespeeds: weighted mass matrices. Stable, but requires
pre-computation/storage of inverses or factorizations!

M1/c2
dp
dt

= AhU ,
(
M1/c2

)
ij

=

∫

Dk

1

c2(x)
φj(x)φi (x).
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Weight-adjusted DG (WADG): high order heterogeneous media

Existing approaches: mass lumping

DG-SEM: collocate at Gauss-Lobatto (or Gauss) points for a diagonal
mass matrix. O(N4) total cost in 3D using Kronecker product.

Limited to polynomial quads/hexes! Loss of stability or accuracy when
extending to simplices (or prisms, pyramids, or non-polynomials).

Chan, Evans (2018). Multi-patch DG-IGA for wave propagation: explicit time-stepping and efficient mass matrix inversion.

Banks, Hagstrom (2016). On Galerkin difference methods.
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Weight-adjusted DG (WADG): high order heterogeneous media

Weight-adjusted DG: stable, accurate, non-invasive

Weight-adjusted DG (WADG): energy stable approx. of M1/c2

M1/c2
dp
dt
≈M (Mc2)−1 M

dp
dt

= AhU .

New evaluation reuses implementation for constant wavespeed

dp
dt

= M−1 (Mc2)︸ ︷︷ ︸
modified update

M−1AhU︸ ︷︷ ︸
constant wavespeed RHS

Low storage matrix-free application of M−1Mc2 using
quadrature-based interpolation and L2 projection matrices Vq,Pq.

(M)−1 Mc2RHS = M−1V T
q W

︸ ︷︷ ︸
Pq

diag
(
c2
)
Vq (RHS) .

Chan, Hewett, Warburton (2016). Weight-adjusted DG methods: wave propagation in heterogeneous media.

Chan, Guo (CAAM) BBWADG October 6-7, 2018 6 / 26



Weight-adjusted DG (WADG): high order heterogeneous media

A weight-adjusted L2 inner product

“Reverse numerical integration”: all operations on reference element.

Let Twu = PN(wu), define T−1
w : PN → PN as

(
wT−1

w u, v
)

= (u, v), ∀v ∈ PN .

T−1
w is “inverse” of weighted projection: TwT

−1
w = T−1

w Tw = PN

Weight-adjusted mass matrix: replace weighted L2 inner product with
“inverse of inverse weighting operator”

(wu, v) =⇒
(
T−1

1/wu, v
)
.

Koutschan, Lehrenfeld, Schöberl (2011). Computer algebra meets FE: an efficient implementation for Maxwell’s equations.
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Weight-adjusted DG (WADG): high order heterogeneous media

Estimates for WADG

Generates norm with same equivalence constants

wminuTMu ≤ uTMwu ≤ wmaxuTMu

Accuracy of weighted “projection” Pw vs. WADG “projection” P̃w

∥∥∥u/w − P̃wu
∥∥∥
L2
≤ Cwh

N+1 ‖w‖WN+1,∞ ‖u‖WN+1,2

∥∥∥Pwu − P̃wu
∥∥∥
L2
≤ Cw ,Nh

N+2 ‖w‖WN+1,∞ ‖u‖WN+1,2

WADG retains high order accuracy for moments: if v ∈ PM

∣∣∣vTMwu − vTMM−1
1/wMu

∣∣∣ ≤
Cwh

2N+2−M ‖w‖WN+1,∞ ‖u‖WN+1,2 ‖v‖L2
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Weight-adjusted DG (WADG): high order heterogeneous media

WADG: nearly identical to using M−1
1/c2

(a) c2(x , y) (b) Standard DG

Figure: Standard vs. weight-adjusted DG with spatially varying c2.

Observed L2 error is O(hN+1); can prove O(hN+1/2) convergence.
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Weight-adjusted DG (WADG): high order heterogeneous media

WADG: more efficient than storing M−1
1/c2 on GPUs

N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 7

M−1
1/c2 .66 2.79 9.90 29.4 73.9 170.5 329.4

WADG 0.59 1.44 4.30 13.9 43.0 107.8 227.7

Speedup 1.11 1.94 2.30 2.16 1.72 1.58 1.45

Time (ns) per element: storing/applying M−1
1/c2 vs WADG (deg. 2N quadrature).

Efficiency on GPUs: reduce memory accesses and data movement.

(Tuned) low storage WADG faster than storing and applying M−1
1/c2!
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Weight-adjusted DG (WADG): high order heterogeneous media

Matrix-valued weights and elastic wave propagation

Symmetric velocity-stress formulation (entries of Ai either ±1 or 0)

ρ
∂v
∂t

=
d∑

i=1

AT
i

∂σ

∂xi
, C−1∂σ

∂t
=

d∑

i=1

Ai
∂v
∂xi

.

DG formulation based on penalty fluxes, matrix-weighted mass matrix

MC−1 =




MC−1
11

. . . MC−1
1d

...
. . .

...
MC−1

d1
. . . MC−1

dd




Weight-adjusted approximation for C−1 decouples each component

M−1
C−1 ≈

(
I ⊗M−1

)
MC

(
I ⊗M−1

)
.
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Weight-adjusted DG (WADG): high order heterogeneous media

Matrix-weighted WADG: elastic wave propagation

(a) Piecewise constant data (b) High order data

Figure: tr(σ) with µ(x) = 1 + H(y) + 1
2 cos(3πx) cos(3πy) cos(3πz), N = 5.
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Weight-adjusted DG (WADG): high order heterogeneous media

Energy stable acoustic-elastic coupling
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Weight-adjusted DG (WADG): high order heterogeneous media

Energy stable acoustic-elastic coupling

(a) Coupling conditions
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Mesh size h
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N = 2

N = 3

N = 4

(b) Scholte wave

Straightforward penalty numerical fluxes in terms of interface residuals, energy
stable and high order accurate for high order heterogeneous media.
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Bernstein-Bezier WADG: high order efficiency
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Bernstein-Bezier WADG: high order efficiency

Computational costs at high orders of approximation

Problem: WADG at high orders becomes expensive!

1 2 3 4 5 6 7 8 9
0

2

4

6

Degree N

R
u

n
ti

m
e

(s
)

WADG runtimes

Volume

Surface

Update

WADG runtimes for 50 timesteps, 98304 elements.

Large dense matrices:
O(N6) work per tet.

High orders usually use
tensor-product elements:
O(N4) vs O(N6) cost, but
less geometric flexibility.

Idea: choose basis such that
matrices are sparse.
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Bernstein-Bezier WADG: high order efficiency

BBDG: Bernstein-Bezier DG methods

Nodal DG: O(N6) cost in 3D vs O(N3) degrees of freedom.

Switch to Bernstein basis: sparse and structured matrices.

Optimal O(N3) application of differentiation and lifting matrices.
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Nodal bases in one, two, and three dimensions.

Chan, Warburton 2015. GPU-accelerated Bernstein-Bezier discontinuous Galerkin methods for wave propagation (SISC).
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Tetrahedral Bernstein differentiation and degree elevation matrices.

Chan, Warburton 2015. GPU-accelerated Bernstein-Bezier discontinuous Galerkin methods for wave propagation (SISC).
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Bernstein-Bezier WADG: high order efficiency

BBDG: Bernstein-Bezier DG methods

Nodal DG: O(N6) cost in 3D vs O(N3) degrees of freedom.

Switch to Bernstein basis: sparse and structured matrices.

Optimal O(N3) application of differentiation and lifting matrices.

Optimal O(N3) complexity “slice-by-slice” application of Bernstein lift.

Chan, Warburton 2015. GPU-accelerated Bernstein-Bezier discontinuous Galerkin methods for wave propagation (SISC).
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Bernstein-Bezier WADG: high order efficiency

BBDG: efficient volume, surface kernels

1 2 3 4 5 6 7 8 9
0
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Degree N

R
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n
ti

m
e

(s
)

Nodal DG

Volume

Surface

1 2 3 4 5 6 7 8 9
0

2
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6

Degree N

Bernstein-Bezier DG

Volume

Surface

du

dt︸︷︷︸
Update kernel

= Dxu︸︷︷︸
Volume kernel

+
∑

faces

Lf (flux)

︸ ︷︷ ︸
Surface kernel

, Lf = M−1Mf .
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Bernstein-Bezier WADG: high order efficiency

Goal: reduce computational complexity of WADG in 3D

WADG: stable and accurate, but O(N6) operations per element.

BBDG: fast O(N3) evaluation, but requires piecewise constant media

Exploit continuous WADG approximation: given u(x), compute

PN (u(x)w(x))

Applying M−1
w is always O(N6) per element, so explicit expression for

WADG is a prerequisite for reducing complexity.
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Bernstein-Bezier WADG: high order efficiency

BBWADG: polynomial multiplication and projection

(a) Exact c2 (b) M = 0 approximation (c) M = 1 approximation

O(N6) update kernel: multiplication by matrices Vq and Pq.

New approach: approx. c2(x) with degree M polynomial, use fast
Bernstein algorithms for polynomial multiplication and projection.

WADG: can reuse fast Bernstein volume and surface kernels.
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Bernstein-Bezier WADG: high order efficiency

Fast Bernstein polynomial multiplication

c1 +c2 +c3 +c4

⇥ =

Bernstein polynomial multiplication (M = 1 shown), O(N3) cost for fixed M.
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Bernstein-Bezier WADG: high order efficiency

Fast Bernstein polynomial projection

Given c2(x)u(x) as a degree (N + M) polynomial, apply L2 projection
matrix PN+M

N to reduce to degree N.

Polynomial L2 projection matrix PN+M
N under Bernstein basis:

PN+M
N =

N∑

j=0

cjEN
N−j

(
EN
N−j

)T

︸ ︷︷ ︸
P̃N

(
EN+M
N

)T

“Telescoping” form of P̃N : O(N4) complexity, more GPU-friendly.

(
c0I + EN

N−1

(
c1I + EN−1

N−2 (c2I + · · · )
(
EN−1
N−2

)T)(
EN
N−1

)T)

Chan, Guo (CAAM) BBWADG October 6-7, 2018 20 / 26



Bernstein-Bezier WADG: high order efficiency

Sketch of GPU algorithm for P̃N

�
EN
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�
EN�1

N�2

�T
EN�1

N�2

EN
N�1

Register

memory
S
h
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or
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O(N3) shared memory

O(N) register memory per thread

O(N3) threads

(
c0I + EN

N−1

(
c1I + EN−1

N−2 (c2I + · · · )
(
EN−1
N−2

)T)(
EN
N−1

)T)
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Bernstein-Bezier WADG: high order efficiency

BBWADG: effect of approximating c2 on accuracy
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quadratic c2

Mesh size h

L
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M = 0

M = 1

M = 2

WADG (N = 4)

Approximating smooth c2(x) using L2 projection:
O(h2) for M = 0, O(h4) for M = 1, O(hM+3) for 0 < M ≤ N − 2.
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Approximating smooth c2(x) using L2 projection:
O(h2) for M = 0, O(h4) for M = 1, O(hM+3) for 0 < M ≤ N − 2.
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Bernstein-Bezier WADG: high order efficiency

BBWADG: computational runtime (3D acoustics)
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Bernstein-Bezier WADG: high order efficiency

BBWADG: computational runtime (3D elasticity)
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Bernstein-Bezier WADG: high order efficiency

BBWADG: update kernel speedup (3D acoustics)

N = 3 N = 4 N = 5 N = 6 N = 7 N = 8

WADG 1.65e-8 3.35e-8 6.94e-8 1.31e-7 3.28e-7 2.89e-6

BBWADG 1.81e-8 2.59e-8 4.22e-8 6.16e-8 9.79e-8 1.32e-7

Speedup 0.9116 1.2934 1.6445 2.1266 3.3504 21.8939

For N ≥ 8, quadrature (and WADG) becomes much more expensive.

(a) N = 7 quadrature (b) N = 8 quadrature
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Thank you! Questions?

Guo, Chan (2018). Bernstein-Bézier weight-adjusted DG methods for wave propagation in heterogeneous media.

Chan (2018). Weight-adjusted DG methods: matrix-valued weights and elastic wave prop. in heterogeneous media.

Chan, Hewett, Warburton (2017). Weight-adjusted DG methods: wave propagation in heterogeneous media.

Chan, Warburton (2017). GPU-accelerated Bernstein-Bezier discontinuous Galerkin methods for wave propagation.
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