Weight-adjusted Bernstein-Bezier DG methods for wave propagation in heterogeneous media

Jesse Chan, Kaihang Guo

Department of Computational and Applied Mathematics, Rice University

SIAM LA-TX Sectional conference

- Unstructured (tetrahedral) meshes for geometric flexibility.
- High order: low numerical dissipation and dispersion.
- High order approximations: more accurate per unknown.
- Explicit time stepping: high performance on many-core.

Figure courtesy of Axel Modave.

- Unstructured (tetrahedral) meshes for geometric flexibility.
- High order: low numerical dissipation and dispersion.
- High order approximations: more accurate per unknown.
- Explicit time stepping: high performance on many-core.

Fine linear approximation.

- Unstructured (tetrahedral) meshes for geometric flexibility.
- High order: low numerical dissipation and dispersion.
- High order approximations: more accurate per unknown.
- Explicit time stepping: high performance on many-core.

Coarse quadratic approximation.

- Unstructured (tetrahedral) meshes for geometric flexibility.
- High order: low numerical dissipation and dispersion.
- High order approximations: more accurate per unknown.
- Explicit time stepping: high performance on many-core.

- Unstructured (tetrahedral) meshes for geometric flexibility.
- High order: low numerical dissipation and dispersion.
- High order approximations: more accurate per unknown.
- Explicit time stepping: high performance on many-core.

Graphics processing units (GPU).

- Unstructured (tetrahedral) meshes for geometric flexibility.
- High order: low numerical dissipation and dispersion.
- High order approximations: more accurate per unknown.
- Explicit time stepping: high performance on many-core.

Graphics processing units (GPU).

Time-domain nodal DG methods

Assume $u(\mathbf{x}, t) = \sum \mathbf{u}_j \phi_j(\mathbf{x})$ on D^k

- Compute numerical flux at face nodes (non-local).
- Compute RHS of (local) ODE.
- Evolve (local) solution using explicit time integration (RK, AB, etc).

$$\frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t} = \mathbf{D}_{\mathsf{x}}\mathbf{u} + \sum_{\mathsf{faces}} \mathbf{L}_{f}\left(\mathsf{flux}\right).$$

 $egin{aligned} m{M}_{ij} &= \int_{D^k} \phi_j(m{x}) \phi_i(m{x}) \ m{L}_f &= m{M}^{-1} m{M}_f. \end{aligned}$

Time-domain nodal DG methods

Assume $u(\mathbf{x}, t) = \sum \mathbf{u}_j \phi_j(\mathbf{x})$ on D^k

- Compute numerical flux at face nodes (non-local).
- Compute RHS of (local) ODE.
- Evolve (local) solution using explicit time integration (RK, AB, etc).

$$egin{aligned} \mathbf{M}_{ij} &= \int_{D^k} \phi_j(\mathbf{x}) \phi_i(\mathbf{x}) \ \mathbf{L}_f &= \mathbf{M}^{-1} \mathbf{M}_f. \end{aligned}$$

Time-domain nodal DG methods

Assume $u(\mathbf{x}, t) = \sum \mathbf{u}_j \phi_j(\mathbf{x})$ on D^k

- Compute numerical flux at face nodes (non-local).
- Compute RHS of (local) ODE.
- Evolve (local) solution using explicit time integration (RK, AB, etc).

Outline

1 Weight-adjusted DG (WADG): high order heterogeneous media

2 Bernstein-Bezier WADG: high order efficiency

Outline

1 Weight-adjusted DG (WADG): high order heterogeneous media

2 Bernstein-Bezier WADG: high order efficiency

High order approximation of media and geometry

(a) Mesh and exact c^2 (b) Piecewise const. c^2 (c) High order c^2

• Piecewise const. c^2 : energy stable and efficient, but inaccurate.

$$\frac{1}{c^2(\boldsymbol{x})}\frac{\partial \boldsymbol{p}}{\partial t} + \nabla \cdot \boldsymbol{u} = 0, \qquad \frac{\partial \boldsymbol{u}}{\partial t} + \nabla \boldsymbol{p} = 0.$$

High order wavespeeds: weighted mass matrices. Stable, but requires pre-computation/storage of inverses or factorizations!

$$\mathbf{M}_{1/c^2} rac{\mathrm{d} \mathbf{p}}{\mathrm{d} t} = \mathbf{A}_h \mathbf{U}, \qquad \left(\mathbf{M}_{1/c^2}\right)_{ij} = \int_{D^k} rac{1}{c^2(\mathbf{x})} \phi_j(\mathbf{x}) \phi_i(\mathbf{x}).$$

Existing approaches: mass lumping

- DG-SEM: collocate at Gauss-Lobatto (or Gauss) points for a diagonal mass matrix. O(N⁴) total cost in 3D using Kronecker product.
- Limited to polynomial quads/hexes! Loss of stability or accuracy when extending to simplices (or prisms, pyramids, or non-polynomials).

Chan, Evans (2018). Multi-patch DG-IGA for wave propagation: explicit time-stepping and efficient mass matrix inversion. Banks, Hagstrom (2016). On Galerkin difference methods.

Weight-adjusted DG: stable, accurate, non-invasive

• Weight-adjusted DG (WADG): energy stable approx. of M_{1/c^2}

$$M_{1/c^2} rac{\mathrm{d} \boldsymbol{p}}{\mathrm{d} t} \approx \boldsymbol{M} \left(\boldsymbol{M}_{c^2}
ight)^{-1} \boldsymbol{M} rac{\mathrm{d} \boldsymbol{p}}{\mathrm{d} t} = \boldsymbol{A}_h \boldsymbol{U}.$$

New evaluation reuses implementation for constant wavespeed

$$\frac{\mathrm{d}\boldsymbol{p}}{\mathrm{d}t} = \underbrace{\boldsymbol{M}^{-1}(\boldsymbol{M}_{c^2})}_{\text{modified update}} \underbrace{\boldsymbol{M}^{-1}\boldsymbol{A}_h\boldsymbol{U}}_{\text{constant wavespeed RHS}}$$

 Low storage matrix-free application of *M*⁻¹*M*_{c²} using quadrature-based interpolation and *L*² projection matrices *V*_q, *P*_q.

$$(\boldsymbol{M})^{-1} \boldsymbol{M}_{c^{2}} \mathsf{RHS} = \underbrace{\boldsymbol{M}^{-1} \boldsymbol{V}_{q}^{T} \boldsymbol{W}}_{\boldsymbol{P}_{q}} \operatorname{diag}\left(c^{2}\right) \boldsymbol{V}_{q}\left(\mathsf{RHS}\right).$$

Chan, Hewett, Warburton (2016). Weight-adjusted DG methods: wave propagation in heterogeneous media.

A weight-adjusted L^2 inner product

"Reverse numerical integration": all operations on reference element.

• Let
$$T_w u = P_N(wu)$$
, define $T_w^{-1} : P^N \to P^N$ as
 $(wT_w^{-1}u, v) = (u, v), \quad \forall v \in P^N.$

• T_w^{-1} is "inverse" of weighted projection: $T_w T_w^{-1} = T_w^{-1} T_w = P_N$

Weight-adjusted mass matrix: replace weighted L² inner product with "inverse of inverse weighting operator"

$$(wu, v) \implies (T_{1/w}^{-1}u, v).$$

Koutschan, Lehrenfeld, Schöberl (2011). Computer algebra meets FE: an efficient implementation for Maxwell's equations.

Generates norm with same equivalence constants

$$w_{\min} \boldsymbol{u}^{\mathsf{T}} \boldsymbol{M} \boldsymbol{u} \leq \boldsymbol{u}^{\mathsf{T}} \boldsymbol{M}_{w} \boldsymbol{u} \leq w_{\max} \boldsymbol{u}^{\mathsf{T}} \boldsymbol{M} \boldsymbol{u}$$

• Accuracy of weighted "projection" P_w vs. WADG "projection" P_w

$$\left\| u/w - \widetilde{P}_{w} u \right\|_{L^{2}} \leq C_{w} h^{N+1} \left\| w \right\|_{W^{N+1,\infty}} \left\| u \right\|_{W^{N+1,2}} \left\| P_{w} u - \widetilde{P}_{w} u \right\|_{L^{2}} \leq C_{w,N} h^{N+2} \left\| w \right\|_{W^{N+1,\infty}} \left\| u \right\|_{W^{N+1,2}}$$

$$\left| \mathbf{v}^{T} \mathbf{M}_{w} \mathbf{u} - \mathbf{v}^{T} \mathbf{M} \mathbf{M}_{1/w}^{-1} \mathbf{M} \mathbf{u} \right| \leq C_{w} h^{2N+2-M} \|w\|_{W^{N+1,\infty}} \|u\|_{W^{N+1,2}} \|v\|_{L^{2}}$$

Generates norm with same equivalence constants

$$w_{\min} \boldsymbol{u}^{\mathsf{T}} \boldsymbol{M} \boldsymbol{u} \leq \boldsymbol{u}^{\mathsf{T}} \boldsymbol{M} \boldsymbol{M}_{1/w}^{-1} \boldsymbol{M} \boldsymbol{u} \leq w_{\max} \boldsymbol{u}^{\mathsf{T}} \boldsymbol{M} \boldsymbol{u}$$

• Accuracy of weighted "projection" P_w vs. WADG "projection" \widetilde{P}_w

$$\left\| u/w - \widetilde{P}_{w}u \right\|_{L^{2}} \leq C_{w}h^{N+1} \left\| w \right\|_{W^{N+1,\infty}} \left\| u \right\|_{W^{N+1,2}} \left\| P_{w}u - \widetilde{P}_{w}u \right\|_{L^{2}} \leq C_{w,N}h^{N+2} \left\| w \right\|_{W^{N+1,\infty}} \left\| u \right\|_{W^{N+1,2}}$$

$$\left| \mathbf{v}^{T} \mathbf{M}_{w} \mathbf{u} - \mathbf{v}^{T} \mathbf{M} \mathbf{M}_{1/w}^{-1} \mathbf{M} \mathbf{u} \right| \leq C_{w} h^{2N+2-M} \|w\|_{W^{N+1,\infty}} \|u\|_{W^{N+1,2}} \|v\|_{L^{2}}$$

Generates norm with same equivalence constants

$$w_{\min} \boldsymbol{u}^{\mathsf{T}} \boldsymbol{M} \boldsymbol{u} \leq \boldsymbol{u}^{\mathsf{T}} \boldsymbol{M} \boldsymbol{M}_{1/w}^{-1} \boldsymbol{M} \boldsymbol{u} \leq w_{\max} \boldsymbol{u}^{\mathsf{T}} \boldsymbol{M} \boldsymbol{u}$$

• Accuracy of weighted "projection" P_w vs. WADG "projection" \widetilde{P}_w

$$\left\| u/w - \widetilde{P}_{w} u \right\|_{L^{2}} \leq C_{w} h^{N+1} \left\| w \right\|_{W^{N+1,\infty}} \left\| u \right\|_{W^{N+1,2}} \left\| P_{w} u - \widetilde{P}_{w} u \right\|_{L^{2}} \leq C_{w,N} h^{N+2} \left\| w \right\|_{W^{N+1,\infty}} \left\| u \right\|_{W^{N+1,2}}$$

$$\left| \mathbf{v}^{T} \mathbf{M}_{w} \mathbf{u} - \mathbf{v}^{T} \mathbf{M} \mathbf{M}_{1/w}^{-1} \mathbf{M} \mathbf{u} \right| \leq C_{w} h^{2N+2-M} \|w\|_{W^{N+1,\infty}} \|u\|_{W^{N+1,2}} \|v\|_{L^{2}}$$

Generates norm with same equivalence constants

$$w_{\min} \boldsymbol{u}^{\mathsf{T}} \boldsymbol{M} \boldsymbol{u} \leq \boldsymbol{u}^{\mathsf{T}} \boldsymbol{M} \boldsymbol{M}_{1/w}^{-1} \boldsymbol{M} \boldsymbol{u} \leq w_{\max} \boldsymbol{u}^{\mathsf{T}} \boldsymbol{M} \boldsymbol{u}$$

• Accuracy of weighted "projection" P_w vs. WADG "projection" \widetilde{P}_w

$$\left\| u/w - \widetilde{P}_{w} u \right\|_{L^{2}} \leq C_{w} h^{N+1} \left\| w \right\|_{W^{N+1,\infty}} \left\| u \right\|_{W^{N+1,2}} \left\| P_{w} u - \widetilde{P}_{w} u \right\|_{L^{2}} \leq C_{w,N} h^{N+2} \left\| w \right\|_{W^{N+1,\infty}} \left\| u \right\|_{W^{N+1,2}}$$

$$\left| \mathbf{v}^{T} \mathbf{M}_{w} \mathbf{u} - \mathbf{v}^{T} \mathbf{M} \mathbf{M}_{1/w}^{-1} \mathbf{M} \mathbf{u} \right| \leq \\ C_{w} h^{2N+2-M} \|w\|_{W^{N+1,\infty}} \|u\|_{W^{N+1,2}} \|v\|_{L^{2}}$$

WADG: nearly identical to using M_{1/c^2}^{-1}

Figure: Standard vs. weight-adjusted DG with spatially varying c^2 .

• Observed L^2 error is $O(h^{N+1})$; can prove $O(h^{N+1/2})$ convergence.

WADG: nearly identical to using M_{1/c^2}^{-1}

Figure: Standard vs. weight-adjusted DG with spatially varying c^2 .

• Observed L^2 error is $O(h^{N+1})$; can prove $O(h^{N+1/2})$ convergence.

WADG: more efficient than storing M_{1/c^2}^{-1} on GPUs

	N = 1	<i>N</i> = 2	<i>N</i> = 3	<i>N</i> = 4	<i>N</i> = 5	<i>N</i> = 6	<i>N</i> = 7
M_{1/c^2}^{-1}	.66	2.79	9.90	29.4	73.9	170.5	329.4
WADG	0.59	1.44	4.30	13.9	43.0	107.8	227.7
Speedup	1.11	1.94	2.30	2.16	1.72	1.58	1.45

Time (ns) per element: storing/applying M_{1/c^2}^{-1} vs WADG (deg. 2N quadrature).

Efficiency on GPUs: reduce memory accesses and data movement.

• (Tuned) low storage WADG faster than storing and applying M_{1/c^2}^{-1} !

Matrix-valued weights and elastic wave propagation

• Symmetric velocity-stress formulation (entries of A_i either ± 1 or 0)

$$\rho \frac{\partial \boldsymbol{v}}{\partial t} = \sum_{i=1}^{d} \boldsymbol{A}_{i}^{T} \frac{\partial \boldsymbol{\sigma}}{\partial \boldsymbol{x}_{i}}, \qquad \boldsymbol{C}^{-1} \frac{\partial \boldsymbol{\sigma}}{\partial t} = \sum_{i=1}^{d} \boldsymbol{A}_{i} \frac{\partial \boldsymbol{v}}{\partial \boldsymbol{x}_{i}},$$

DG formulation based on penalty fluxes, matrix-weighted mass matrix

$$\boldsymbol{M}_{\boldsymbol{C}^{-1}} = \begin{pmatrix} \boldsymbol{M}_{C_{11}^{-1}} & \dots & \boldsymbol{M}_{C_{1d}^{-1}} \\ \vdots & \ddots & \vdots \\ \boldsymbol{M}_{C_{d1}^{-1}} & \dots & \boldsymbol{M}_{C_{dd}^{-1}} \end{pmatrix}$$

• Weight-adjusted approximation for C^{-1} decouples each component

$$\pmb{M}_{\pmb{C}^{-1}}^{-1} pprox \left(\pmb{I} \otimes \pmb{M}^{-1}
ight) \pmb{M}_{\pmb{C}} \left(\pmb{I} \otimes \pmb{M}^{-1}
ight).$$

Matrix-weighted WADG: elastic wave propagation

Figure: tr($\boldsymbol{\sigma}$) with $\mu(\boldsymbol{x}) = 1 + H(y) + \frac{1}{2}\cos(3\pi x)\cos(3\pi y)\cos(3\pi z)$, N = 5.

Energy stable acoustic-elastic coupling

(Elastic) σ, v $u \cdot n = v \cdot n$ $\boldsymbol{A}_{\boldsymbol{n}}^T \boldsymbol{\sigma} = p \boldsymbol{n}$ p, u(Acoustic)

Energy stable acoustic-elastic coupling

$$(\text{Elastic})$$

$$\frac{1}{2} \langle pn - A_n^T \sigma - (I - nn^T) A_n^T \sigma, w \rangle + \frac{\tau}{2} \langle (u - v) \cdot n, w \cdot n \rangle$$

$$\frac{1}{2} \langle (u - v) \cdot n, A_n^T q \rangle + \frac{\tau}{2} \langle (pn - A_n^T \sigma), A_n^T q \rangle$$

$$u \cdot n = v \cdot n$$

$$A_n^T \sigma = pn$$

$$\frac{1}{2} \langle (A_n^T \sigma - pn) \cdot n, w \cdot n \rangle + \frac{\tau}{2} \langle (v - u) \cdot n, w \cdot n \rangle$$

$$\frac{1}{2} \langle (v - u) \cdot n, q \rangle + \frac{\tau}{2} \langle (A_n^T \sigma - pn) \cdot n, q \rangle$$

$$(\text{Acoustic})$$

Chan, Guo (CAAM)

Energy stable acoustic-elastic coupling

Straightforward penalty numerical fluxes in terms of interface residuals, energy stable and high order accurate for high order heterogeneous media.

Outline

1 Weight-adjusted DG (WADG): high order heterogeneous media

2 Bernstein-Bezier WADG: high order efficiency

Computational costs at high orders of approximation

Problem: WADG at high orders becomes expensive!

- Large **dense** matrices: *O*(*N*⁶) work per tet.
 - High orders usually use tensor-product elements: O(N⁴) vs O(N⁶) cost, but less geometric flexibility.
 - Idea: choose basis such that matrices are sparse.

WADG runtimes for 50 timesteps, 98304 elements.

BBDG: Bernstein-Bezier DG methods

- Nodal DG: $O(N^6)$ cost in 3D vs $O(N^3)$ degrees of freedom.
- Switch to Bernstein basis: sparse and structured matrices.
- Optimal O(N³) application of differentiation and lifting matrices.

Nodal bases in one, two, and three dimensions.

Chan, Warburton 2015. GPU-accelerated Bernstein-Bezier discontinuous Galerkin methods for wave propagation (SISC).

Bernstein-Bezier WADG: high order efficiency

BBDG: Bernstein-Bezier DG methods

- Nodal DG: $O(N^6)$ cost in 3D vs $O(N^3)$ degrees of freedom.
- Switch to Bernstein basis: sparse and structured matrices.
- Optimal O(N³) application of differentiation and lifting matrices.

Bernstein bases in one, two, and three dimensions.

Chan, Warburton 2015. GPU-accelerated Bernstein-Bezier discontinuous Galerkin methods for wave propagation (SISC).

Bernstein-Bezier WADG: high order efficiency

BBDG: Bernstein-Bezier DG methods

- Nodal DG: $O(N^6)$ cost in 3D vs $O(N^3)$ degrees of freedom.
- Switch to Bernstein basis: sparse and structured matrices.

Optimal O(N³) application of differentiation and lifting matrices.

Tetrahedral Bernstein differentiation and degree elevation matrices.

Chan, Warburton 2015. GPU-accelerated Bernstein-Bezier discontinuous Galerkin methods for wave propagation (SISC).

BBDG: Bernstein-Bezier DG methods

- Nodal DG: $O(N^6)$ cost in 3D vs $O(N^3)$ degrees of freedom.
- Switch to Bernstein basis: sparse and structured matrices.
- Optimal $O(N^3)$ application of differentiation and lifting matrices.

Optimal $O(N^3)$ complexity "slice-by-slice" application of Bernstein lift.

Chan, Warburton 2015. GPU-accelerated Bernstein-Bezier discontinuous Galerkin methods for wave propagation (SISC).

BBDG: efficient volume, surface kernels

Bernstein-Bezier WADG: high order efficiency

BBDG: efficient volume, surface kernels

Goal: reduce computational complexity of WADG in 3D

- WADG: stable and accurate, but $O(N^6)$ operations per element.
- BBDG: fast $O(N^3)$ evaluation, but requires piecewise constant media
- Exploit continuous WADG approximation: given $u(\mathbf{x})$, compute

 $P_N(u(\boldsymbol{x})w(\boldsymbol{x}))$

Applying M_w^{-1} is always $O(N^6)$ per element, so explicit expression for WADG is a prerequisite for reducing complexity.

BBWADG: polynomial multiplication and projection

(a) Exact c^2 (b) M = 0 approximation (c) M = 1 approximation

- $O(N^6)$ update kernel: multiplication by matrices V_q and P_q .
- New approach: approx. $c^2(x)$ with degree *M* polynomial, use fast Bernstein algorithms for polynomial multiplication and projection.
- WADG: can reuse fast Bernstein volume and surface kernels.

Fast Bernstein polynomial multiplication

Bernstein polynomial multiplication (M = 1 shown), $O(N^3)$ cost for fixed M.

Fast Bernstein polynomial projection

- Given c²(x)u(x) as a degree (N + M) polynomial, apply L² projection matrix P^{N+M}_N to reduce to degree N.
- Polynomial L^2 projection matrix P_N^{N+M} under Bernstein basis:

$$\boldsymbol{P}_{N}^{N+M} = \underbrace{\sum_{j=0}^{N} c_{j} \boldsymbol{E}_{N-j}^{N} \left(\boldsymbol{E}_{N-j}^{N} \right)^{T}}_{\boldsymbol{\tilde{P}}_{N}} \left(\boldsymbol{E}_{N}^{N+M} \right)^{T}$$

• "Telescoping" form of \tilde{P}_N : $O(N^4)$ complexity, more GPU-friendly.

$$\left(c_{0}\boldsymbol{I}+\boldsymbol{E}_{N-1}^{N}\left(c_{1}\boldsymbol{I}+\boldsymbol{E}_{N-2}^{N-1}\left(c_{2}\boldsymbol{I}+\cdots\right)\left(\boldsymbol{E}_{N-2}^{N-1}\right)^{T}\right)\left(\boldsymbol{E}_{N-1}^{N}\right)^{T}\right)$$

Bernstein-Bezier WADG: high order efficiency

Sketch of GPU algorithm for \tilde{P}_N

Chan, Guo (CAAM)

BBWADG: effect of approximating c^2 on accuracy

Approximating smooth $c^2(\mathbf{x})$ using L^2 projection: $O(h^2)$ for M = 0, $O(h^4)$ for M = 1, $O(h^{M+3})$ for $0 < M \le N - 2$.

BBWADG: effect of approximating c^2 on accuracy

Approximating smooth $c^2(\mathbf{x})$ using L^2 projection: $O(h^2)$ for M = 0, $O(h^4)$ for M = 1, $O(h^{M+3})$ for $0 < M \le N - 2$.

BBWADG: computational runtime (3D acoustics)

Chan, Guo (CAAM)

BBWADG: computational runtime (3D elasticity)

Chan, Guo (CAAM)

BBWADG: update kernel speedup (3D acoustics)

	<i>N</i> = 3	<i>N</i> = 4	<i>N</i> = 5	<i>N</i> = 6	N = 7	<i>N</i> = 8
WADG	1.65e-8	3.35e-8	6.94e-8	1.31e-7	3.28e-7	2.89e-6
BBWADG	1.81e-8	2.59e-8	4.22e-8	6.16e-8	9.79e-8	1.32e-7
Speedup	0.9116	1.2934	1.6445	2.1266	3.3504	21.8939

For $N \ge 8$, quadrature (and WADG) becomes much more expensive.

Summary and acknowledgements

- Weight-adjusted DG: provable stability, high order accuracy, and efficiency in heterogeneous acoustic and elastic media.
- BBWADG: improved complexity for approximate wavespeeds.
- This work is supported by the National Science Foundation under DMS-1712639 and DMS-1719818.

Thank you! Questions?

Guo, Chan (2018). Bernstein-Bézier weight-adjusted DG methods for wave propagation in heterogeneous media. Chan (2018). Weight-adjusted DG methods: matrix-valued weights and elastic wave prop. in heterogeneous media. Chan, Hewett, Warburton (2017). Weight-adjusted DG methods: wave propagation in heterogeneous media. Chan, Warburton (2017). GPU-accelerated Bernstein-Bezier discontinuous Galerkin methods for wave propagation.

Chan, Guo (CAAM)