Weight-adjusted Bernstein-Bezier DG methods for wave propagation in heterogeneous media

Jesse Chan, Kaihang Guo

Department of Computational and Applied Math, Rice University

Rice Oil and Gas HPC Conference 2018 March 12-13, 2018

- Unstructured (tetrahedral) meshes for geometric flexibility.
- High order: low numerical dissipation and dispersion.
- High order approximations: more accurate per unknown.
- Explicit time stepping: high performance on many-core.

Figure courtesy of Axel Modave.

- Unstructured (tetrahedral) meshes for geometric flexibility.
- High order: low numerical dissipation and dispersion.
- High order approximations: more accurate per unknown.
- Explicit time stepping: high performance on many-core.

- Unstructured (tetrahedral) meshes for geometric flexibility.
- High order: low numerical dissipation and dispersion.
- High order approximations: more accurate per unknown.
- Explicit time stepping: high performance on many-core.

Coarse quadratic approximation.

- Unstructured (tetrahedral) meshes for geometric flexibility.
- High order: low numerical dissipation and dispersion.
- High order approximations: more accurate per unknown.
- Explicit time stepping: high performance on many-core.

- Unstructured (tetrahedral) meshes for geometric flexibility.
- High order: low numerical dissipation and dispersion.
- High order approximations: more accurate per unknown.
- Explicit time stepping: high performance on many-core.

Graphics processing units (GPU).

- Unstructured (tetrahedral) meshes for geometric flexibility.
- High order: low numerical dissipation and dispersion.
- High order approximations: more accurate per unknown.
- Explicit time stepping: high performance on many-core.

Graphics processing units (GPU).

Time-domain nodal DG methods

Assume $u(\mathbf{x}, t) = \sum \mathbf{u}_j \phi_j(\mathbf{x})$ on D^k

- Compute numerical flux at face nodes (non-local).
- Compute RHS of (local) ODE.
- Evolve (local) solution using explicit time integration (RK, AB, etc).

$$\frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t} = \mathbf{D}_{x}\mathbf{u} + \sum_{\mathrm{faces}} \mathbf{L}_{f}(\mathrm{flux}).$$

 $egin{aligned} m{M}_{ij} &= \int_{D^k} \phi_j(m{x}) \phi_i(m{x}) \ m{L}_f &= m{M}^{-1} m{M}_f. \end{aligned}$

Time-domain nodal DG methods

Assume $u(\mathbf{x}, t) = \sum \mathbf{u}_j \phi_j(\mathbf{x})$ on D^k

- Compute numerical flux at face nodes (non-local).
- Compute RHS of (local) ODE.
- Evolve (local) solution using explicit time integration (RK, AB, etc).

$$egin{aligned} m{M}_{ij} &= \int_{D^k} \phi_j(m{x}) \phi_i(m{x}) \ m{L}_f &= m{M}^{-1} m{M}_f. \end{aligned}$$

Time-domain nodal DG methods

Assume $u(\mathbf{x}, t) = \sum \mathbf{u}_j \phi_j(\mathbf{x})$ on D^k

- Compute numerical flux at face nodes (non-local).
- Compute RHS of (local) ODE.
- Evolve (local) solution using explicit time integration (RK, AB, etc).

Outline

1 Weight-adjusted DG (WADG): arbitrary heterogeneous media

2 Bernstein-Bezier WADG: high order efficiency

Outline

1 Weight-adjusted DG (WADG): arbitrary heterogeneous media

2 Bernstein-Bezier WADG: high order efficiency

High order approximation of media and geometry

• Piecewise constant wavespeed c^2 : efficient, but spurious reflections.

$$\frac{1}{2} \frac{\partial \mathbf{p}}{\partial \mathbf{r}} = \frac{\partial \mathbf{u}}{\partial \mathbf{r}}$$

$$\frac{1}{c^2(\mathbf{x})}\frac{\partial p}{\partial t} + \nabla \cdot \mathbf{u} = 0, \qquad \frac{\partial \mathbf{u}}{\partial t} + \nabla p = 0.$$

High order wavespeeds: weighted mass matrices. Stable, but requires pre-computation/storage of inverses or factorizations!

$$\mathbf{M}_{1/c^2} rac{\mathrm{d} \mathbf{p}}{\mathrm{d} t} = \mathbf{A}_h \mathbf{U}, \qquad \left(\mathbf{M}_{1/c^2}\right)_{ij} = \int_{D^k} rac{1}{c^2(\mathbf{x})} \phi_j(\mathbf{x}) \phi_i(\mathbf{x}).$$

Weight-adjusted DG: stable, accurate, non-invasive

• Weight-adjusted DG (WADG): energy stable approx. of M_{1/c^2}

$$M_{1/c^2} \frac{\mathrm{d}\boldsymbol{p}}{\mathrm{d}t} \approx \boldsymbol{M} \left(\boldsymbol{M}_{c^2}
ight)^{-1} \boldsymbol{M} \frac{\mathrm{d}\boldsymbol{p}}{\mathrm{d}t} = \boldsymbol{A}_h \boldsymbol{U}.$$

New evaluation reuses implementation for constant wavespeed

$$\frac{\mathrm{d}\boldsymbol{p}}{\mathrm{d}t} = \underbrace{\boldsymbol{M}^{-1}(\boldsymbol{M}_{c^2})}_{\text{modified update}} \underbrace{\boldsymbol{M}^{-1}\boldsymbol{A}_h\boldsymbol{U}}_{\text{constant wavespeed RHS}}$$

 Low storage matrix-free application of *M*⁻¹*M*_{c²} using quadrature-based interpolation and *L*² projection matrices *V_q*, *P_q*.

$$(\boldsymbol{M})^{-1} \boldsymbol{M}_{c^{2}} \mathsf{RHS} = \underbrace{\boldsymbol{M}^{-1} \boldsymbol{V}_{q}^{T} \boldsymbol{W}}_{\boldsymbol{P}_{q}} \operatorname{diag}\left(c^{2}\right) \boldsymbol{V}_{q}\left(\mathsf{RHS}\right).$$

Chan, Hewett, Warburton. 2016. Weight-adjusted DG methods: wave propagation in heterogeneous media (SISC).

Weight-adjusted DG (WADG): arbitrary heterogeneous media

WADG: nearly identical to using M_{1/c^2}^{-1}

(a) $c^{2}(x, y)$

(b) Standard DG

Figure: Standard vs. weight-adjusted DG with spatially varying c^2 .

L² error is O(h^{N+1}); standard DG and WADG difference is O(h^{N+2}).
 Can generalize to matrix weights (elastic wave propagation).

Chan 2017. Weight-adjusted DG methods: matrix-valued weights and elastic wave prop. in heterogeneous media (IJNME).

Weight-adjusted DG (WADG): arbitrary heterogeneous media

WADG: nearly identical to using M_{1/c^2}^{-1}

(a) $c^{2}(x,y)$

(b) Weighted-adjusted DG

Figure: Standard vs. weight-adjusted DG with spatially varying c^2 .

L² error is O(h^{N+1}); standard DG and WADG difference is O(h^{N+2}).
 Can generalize to matrix weights (elastic wave propagation).

Chan 2017. Weight-adjusted DG methods: matrix-valued weights and elastic wave prop. in heterogeneous media (IJNME).

WADG: more efficient than storing M_{1/c^2}^{-1} on GPUs

	N = 1	<i>N</i> = 2	<i>N</i> = 3	<i>N</i> = 4	<i>N</i> = 5	<i>N</i> = 6	<i>N</i> = 7
M_{1/c^2}^{-1}	.66	2.79	9.90	29.4	73.9	170.5	329.4
WADG	0.59	1.44	4.30	13.9	43.0	107.8	227.7
Speedup	1.11	1.94	2.30	2.16	1.72	1.58	1.45

Time (ns) per element: storing/applying M_{1/c^2}^{-1} vs WADG (deg. 2N quadrature).

Efficiency on GPUs: reduce memory accesses and data movement.

• (Tuned) low storage WADG faster than storing and applying M_{1/c^2}^{-1} !

Computational costs at high orders of approximation

Problem: WADG at high orders becomes expensive!

- Large dense matrices:
 O(N⁶) work per tet.
- High orders usually use tensor-product elements: O(N⁴) vs O(N⁶) cost, but less geometric flexibility.
- Idea: choose basis such that matrices are sparse.

WADG runtimes for 50 timesteps, 98304 elements.

BBDG: Bernstein-Bezier DG methods

- Nodal DG: $O(N^6)$ cost in 3D vs $O(N^3)$ degrees of freedom.
- Switch to Bernstein basis: sparse and structured matrices.
- Optimal O(N³) application of differentiation and lifting matrices.

Nodal bases in one, two, and three dimensions.

Chan, Warburton 2015. GPU-accelerated Bernstein-Bezier discontinuous Galerkin methods for wave propagation (SISC).

Bernstein-Bezier WADG: high order efficiency

BBDG: Bernstein-Bezier DG methods

- Nodal DG: $O(N^6)$ cost in 3D vs $O(N^3)$ degrees of freedom.
- Switch to Bernstein basis: sparse and structured matrices.
- Optimal O(N³) application of differentiation and lifting matrices.

Bernstein bases in one, two, and three dimensions.

Chan, Warburton 2015. GPU-accelerated Bernstein-Bezier discontinuous Galerkin methods for wave propagation (SISC).

Bernstein-Bezier WADG: high order efficiency

BBDG: Bernstein-Bezier DG methods

- Nodal DG: $O(N^6)$ cost in 3D vs $O(N^3)$ degrees of freedom.
- Switch to Bernstein basis: sparse and structured matrices.

Optimal O(N³) application of differentiation and lifting matrices.

Sparse Bernstein differentiation matrices for the reference tetrahedron.

Chan, Warburton 2015. GPU-accelerated Bernstein-Bezier discontinuous Galerkin methods for wave propagation (SISC).

BBDG: Bernstein-Bezier DG methods

- Nodal DG: $O(N^6)$ cost in 3D vs $O(N^3)$ degrees of freedom.
- Switch to Bernstein basis: sparse and structured matrices.
- Optimal $O(N^3)$ application of differentiation and lifting matrices.

Optimal $O(N^3)$ complexity "slice-by-slice" application of Bernstein lift.

Chan, Warburton 2015. GPU-accelerated Bernstein-Bezier discontinuous Galerkin methods for wave propagation (SISC).

BBDG: efficient volume, surface kernels

Bernstein-Bezier WADG: high order efficiency

BBDG: efficient volume, surface kernels

BBWADG: polynomial multiplication and projection

(a) Exact c^2 (b) M = 0 approximation (c) M = 1 approximation

- WADG: can reuse fast Bernstein volume and surface kernels.
- O(N⁶) update kernel: V_q interpolates u(x) to quadrature points, scale by c²(x) at quadrature points, apply P_q to project back to P^N.
- New approach: approx. $c^2(x)$ with degree *M* polynomial, use fast Bernstein algorithms for polynomial multiplication and projection.

Fast Bernstein polynomial multiplication

Bernstein polynomial multiplication: for fixed M, $O(N^3)$ complexity.

Fast Bernstein polynomial projection

- Given c²(x)u(x) as a degree (N + M) polynomial, apply L² projection matrix P^{N+M}_N to reduce to degree N.
- Polynomial L^2 projection matrix P_N^{N+M} under Bernstein basis:

$$\boldsymbol{P}_{N}^{N+M} = \underbrace{\sum_{j=0}^{N} c_{j} \boldsymbol{E}_{N-j}^{N} \left(\boldsymbol{E}_{N-j}^{N} \right)^{T}}_{\boldsymbol{\tilde{P}}_{N}} \left(\boldsymbol{E}_{N}^{N+M} \right)^{T}$$

• "Telescoping" form of \tilde{P}_N : $O(N^4)$ complexity, more GPU-friendly.

$$\left(c_{0}\boldsymbol{\textit{I}}+\boldsymbol{\textit{E}}_{N-1}^{N}\left(c_{1}\boldsymbol{\textit{I}}+\boldsymbol{\textit{E}}_{N-2}^{N-1}\left(c_{2}\boldsymbol{\textit{I}}+\cdots\right)\left(\boldsymbol{\textit{E}}_{N-2}^{N-1}\right)^{T}\right)\left(\boldsymbol{\textit{E}}_{N-1}^{N}\right)^{T}\right)$$

Bernstein-Bezier WADG: high order efficiency

Sketch of GPU algorithm for \tilde{P}_N

Chan, Guo (CAAM)

Bernstein-Bezier WADG: high order efficiency

BBWADG: approximating c^2 and accuracy

Approximating smooth $c^2(\mathbf{x})$ using L^2 projection: $O(h^2)$ for M = 0, $O(h^4)$ for M = 1, $O(h^{M+3})$ for $0 < M \le N - 2$.

BBWADG: computational runtime (acoustics)

Update kernel for M = 1: runtime per element

Chan, Guo (CAAM)

BBWADG: update kernel speedup over WADG (acoustics)

	<i>N</i> = 3	<i>N</i> = 4	<i>N</i> = 5	<i>N</i> = 6	<i>N</i> = 7	<i>N</i> = 8
WADG	1.60e-8	3.34e-8	6.94e-8	1.28e-7	3.31e-7	3.03e-6
BBWADG	2.20e-8	3.30e-8	4.42e-8	6.01e-8	9.46e-8	1.31e-7
Speedup	0.7260	1.0127	1.5706	2.1258	3.4938	23.1591

For $N \ge 8$, quadrature (and WADG) becomes much more expensive.

Summary and acknowledgements

- Weight-adjusted DG: stability and efficiency for heterogeneous media.
- BBWADG: improved complexity for approximate wavespeeds.
- This work is supported by the National Science Foundation under DMS-1712639 and DMS-1719818.

Thank you! Questions?

Chan, Hewett, Warburton. 2016. Weight-adjusted DG methods: wave propagation in heterogeneous media (SISC). Chan 2017. Weight-adjusted DG methods: matrix-valued weights and elastic wave prop. in heterogeneous media (IJNME). Chan, Warburton 2015. GPU-accelerated Bernstein-Bezier discontinuous Galerkin methods for wave propagation (SISC).