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High order nodal DG methods

High order DG methods for wave propagation

Unstructured (tetrahedral)
meshes for geometric flexibility.

Low numerical dissipation and
dispersion.

High order approximations:
more accurate per unknown.

High performance on many-core
(explicit time stepping).

Figure courtesy of Axel Modave.
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Unstructured (tetrahedral)
meshes for geometric flexibility.

Low numerical dissipation and
dispersion.
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High order nodal DG methods

High order DG methods for wave propagation

Unstructured (tetrahedral)
meshes for geometric flexibility.

Low numerical dissipation and
dispersion.

High order approximations:
more accurate per unknown.

High performance on many-core
(explicit time stepping).

Max errors vs. dofs.
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High order nodal DG methods

High order DG methods for wave propagation

Unstructured (tetrahedral)
meshes for geometric flexibility.

Low numerical dissipation and
dispersion.

High order approximations:
more accurate per unknown.

High performance on many-core
(explicit time stepping).

A graphics processing unit (GPU).
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High order nodal DG methods

Discontinuous Galerkin methods

Discontinuous Galerkin (DG) methods:

Piecewise polynomial approximation.

Weak continuity across faces.

Continuous PDE (for illustration: constant advection)

∂u

∂t
=
∂u

∂x

DG local weak form over Dk with numerical flux f ∗.∫
Dk

∂u

∂t
φ =

∫
Dk

∂u

∂x
φ+

∫
∂Dk

n · (f ∗ − f (u))φ, u, φ ∈ Vh
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High order nodal DG methods

Discontinuous Galerkin methods

Discontinuous Galerkin (DG) methods:

Piecewise polynomial approximation.

Weak continuity across faces.

DG yields system of ODEs

MΩ
du

dt
= Au.

DG mass matrix decouples across elements,
inter-element coupling only through A.
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High order nodal DG methods

Discontinuous Galerkin methods

Discontinuous Galerkin (DG) methods:

Piecewise polynomial approximation.

Weak continuity across faces.

Matrix-free evaluation of M−1A.

Local differentiation and lifting
matrices Dx and Lf = M−1Mf .

Assume (for now) piecewise constant
coefficients and affine mappings. Figure: Nodal bases simplify

flux computations.
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High order nodal DG methods

Time-domain nodal DG methods

Given initial condition u(x, 0):

Compute numerical flux at face
nodes (non-local).

Compute RHS of (local) ODE.

Evolve (local) solution using explicit
time integration (RK, AB, etc).

du

dt
= Dxu +

∑
faces

Lf (flux) , Lf = M−1Mf .

Well-suited to GPUs computing (significant speedups over CPUs)!
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High order Bernstein-Bézier DG methods

Computational costs at high orders of approximation

Problem: (tetrahedral) DG becomes expensive at high orders!
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DG runtimes for 50 timesteps, 98304 elements.

Large dense matrices:
O(N6) work per tet.

Tensor-product elements
usually preferred for very
high orders.

O(N4) vs O(N6) cost, but
less geometric flexibility.
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High order Bernstein-Bézier DG methods

Spectral element methods

Tensor product elements, Gauss-Legendre-Lobatto nodal basis.

O(Nd+1) vs O(N2d) work per element (differentiation, lifting).

Hexahedral mesh generation more difficult.

Figure: Spectral element stencils for N = 7 (orders N > 10 not uncommon!).

Fischer, Ronquist 1994. Spectral element methods for large scale parallel Navier-Stokes calculations.

Shepherd and Johnson 2008. Hexahedral mesh generation constraints.
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High order Bernstein-Bézier DG methods

High order nodal DG on tetrahedral meshes

du

dt
= Dxu +

∑
faces

Lf (flux) , Lf = M−1Mf .

Nodal bases: reduce the cost of
computing numerical fluxes.

No clear tetrahedral equivalent to
spectral differentiation, lift matrices.

O(N3) unknowns in 3D; O(N6)
costs for applying dense matrices.

Derivative and lift matrices depend on the basis:
can we choose one that is efficient (and numerically stable)?
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High order Bernstein-Bézier DG methods

Bernstein-Bézier bases for finite element methods

Geometry, graphics, Computer Aided Design (CAD).

Recent developments: optimal complexity assembly of finite element
matrices, sum factorization (reduced complexity quadrature).

This work: adapt Bernstein-Bézier for time-domain DG methods.

Split multi-span NURBS surfaces into Bézier patches, https://knowledge.autodesk.com

Ainsworth et al. 2011. Bernstein-Bézier finite elements of arbitrary order and optimal assembly procedures.

Kirby 2011. Fast simplicial finite element algorithms using Bernstein polynomials.
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High order Bernstein-Bézier DG methods

Bernstein-Bézier polynomial bases on simplices
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Each function attains its maximum at an equispaced lattice point of a d-simplex.

Simple expression in 1D

BN
i (x) = x i (1− x)N−i , 0 ≤ x ≤ 1.

Barycentric monomials on a d-simplex. For a tetrahedron,

BN
ijkl(λ0, λ1, λ2, λ3),=

N!

i !j!k!l!
λi0λ

j
1λ

k
2λ

l
3, i + j + k + l = N.

Similar structure to nodal basis (vertex, edge, face, interior functions).
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High order Bernstein-Bézier DG methods

Bernstein-Bézier derivatives and degree elevation in 1D

Simple differentiation of Bernstein polynomials

∂BN
i (x)

∂x
= N

(
BN−1
i−1 (x)− BN−1

i (x)
)
.

Simple degree elevation of Bernstein polynomials

BN−1
i (x) =

(
N − i

N

)
BN
i (x)−

(
i + 1

N

)
BN
i+1(x).

Combine to get expansion of Bernstein derivatives

∂BN
i (x)

∂x
= aNi B

N
i−1(x) + bNi B

N
i (x)− cNi BN

i+1(x).

Implies 1D derivative matrix Dx is sparse (tridiagonal).
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High order Bernstein-Bézier DG methods

Bernstein-Bézier derivative and degree elevation in 3D

Bernstein-Bézier barycentric differentiation matrices very sparse.

Degree elevation matrices EN
N−i are sparse (for consecutive degrees).

Higher degree elevation → product of matrices EN
N−2 = EN

N−1EN−1
N−2.

0 10 20 30

nz = 80

0

5

10

15

20

25

30

35

(a) Derivative matrix w.r.t.
first barycentric coordinate.
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High order Bernstein-Bézier DG methods

Stencils for Bernstein-Bézier derivative matrices

Stencil sizes at most (d + 1) in d dimensions.

Compute derivatives w.r.t. barycentric coordinates.

Stencil values are identical for all barycentric derivatives.

(d) Stencil for Dλ0 (e) Stencil for Dλ1 (f) Stencil for Dλ2

Figure: Bernstein-Bézier stencils for a single node (in red) N = 7.
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High order Bernstein-Bézier DG methods

Factorization of the Bernstein lift operator

The Bernstein-Bézier lift matrix L admits a factorization of the form

L = EL


L0
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L0

L0

 .
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Chan, Warburton 2016. GPU-accelerated Bernstein-Bézier DG methods for wave problems.
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Chan, Warburton 2016. GPU-accelerated Bernstein-Bézier DG methods for wave problems.
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High order Bernstein-Bézier DG methods

Bernstein-Bézier lift matrix: optimal complexity application

L “lifts” numerical fluxes from faces to volume.

Apply L0 to face flux, extend to each “layer” of the simplex.

(a) Apply L0 to flux to
compute face output

(b) Degree reduce face
nodes to compute first layer

(c) Degree reduce first layer
to compute second layer

Figure: An O(Nd) storage/complexity approach to applying the lift matrix.

For N < 6, currently more efficient to treat EL as a sparse matrix —
irregular data accesses with optimal O(Nd) approach.
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High order Bernstein-Bézier DG methods

Numerical stability of Bernstein-Bézier DG

“Condition number” of Bernstein differentiation and lift matrices
comparable to that of nodal bases.

κ(A) =
σ1

σr

Comparable long-time growth of (single precision) numerical error.
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High order Bernstein-Bézier DG methods

Numerical stability of Bernstein-Bézier DG
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High order Bernstein-Bézier DG methods

GPU runtime comparisons of BBDG and nodal DG

Bernstein-Bézier DG achieves ≈ 2× speedup at moderate orders,
and up to ≈ 6× speedup at high orders (for acoustics).
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Update kernel

= Dxu︸︷︷︸
Volume kernel

+
∑
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Lf (flux)︸ ︷︷ ︸
Surface kernel

, Lf = M−1Mf .
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High order Bernstein-Bézier DG methods
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Weight-adjusted DG: beyond low order coefficients/geometry

Extensions: high order models of heterogeneous media

Acoustic wave equation in heterogeneous media

1

c2(x)

∂2p

∂t2
−∆p = 0.

Piecewise constant c2(x) efficient, but generates spurious reflections.

Goal: high order c2(x), stability, low computational complexity.

(l) Mesh and exact c2 (m) Piecewise constant c2 (n) High order c2
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Weight-adjusted DG: beyond low order coefficients/geometry

Weighted mass matrices and weight-adjusted DG

Weighted mass matrix: high order accurate and energy stable, but
high storage costs, O(N6) complexity to apply M−1

w .

d

dt
Mwu = right hand side, w = 1/c2.

Weight-adjusted DG (WADG): energy stable, low storage
approximation of weighted mass matrix

d

dt
Mwu ≈ d

dt
M
(
M1/w

)−1 Mu = right hand side.

Bypass inverse of weighted matrix (Mw )−1

M
(
M1/w

)−1 M
dU
dt

= AhU

→ dU
dt

= M−1M1/w M−1AhU︸ ︷︷ ︸
RHS for w=1
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Weight-adjusted DG: beyond low order coefficients/geometry

Acoustic wave equation: heterogeneous media

(a) c2(x , y) (b) Standard DG

L2 convergence between optimal O(hN+1), provable O(hN+1/2).

Extensions to curved elements, matrix weights (elastodynamics).

Chan, Hewett, Warburton. 2016. Weight-adjusted DG methods: wave propagation in heterogeneous media.

Chan, Hewett, Warburton. 2016. Weight-adjusted DG methods: curvilinear meshes.

Chan 2017. Weight-adjusted DG methods: matrix-valued weights and elastic wave prop. in heterogeneous media.
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Weight-adjusted DG: beyond low order coefficients/geometry

Acoustic wave equation: heterogeneous media
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Weight-adjusted DG: beyond low order coefficients/geometry

WADG: low-complexity implementations

Low storage, matrix-free application of
(
M−1

w M
)−1

= M−1Mw .

(M)−1 M1/wRHS = M̂−1V T
q W︸ ︷︷ ︸

Pq

diag (1/w) Vq (RHS) .

O(N4) cost in 3D: sum factorization for Vq, block LDL for M̂−1.

Current work: for fixed approximations of w(x), optimal complexity
WADG using polynomial multiplication and truncation.

Kirby 2017. Fast inversion of the simplicial Bernstein mass matrix.

Kirby and Thinh 2012. Fast simplicial quadrature-based finite element operators using Bernstein polynomials.
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Weight-adjusted DG: beyond low order coefficients/geometry

Summary and acknowledgements

Optimal complexity RHS evaluation for time-domain DG.

Bernstein-Bézier sparsity: efficiency at high orders on GPUs.

Thanks to NSF and TOTAL E&P Research and Technology USA
for their support of this work.

Chan 2017. Weight-adjusted DG methods: matrix-valued weights and elastic wave prop. in heterogeneous media (arXiv).

Chan, Hewett, Warburton. 2016. Weight-adjusted DG methods: wave propagation in heterogeneous media (SISC).

Chan, Hewett, Warburton. 2016. Weight-adjusted DG methods: curvilinear meshes (arXiv).

Chan, Warburton 2016. GPU-accelerated Bernstein-Bézier DG methods for wave problems (SISC).
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Weight-adjusted DG: beyond low order coefficients/geometry

Additional slides
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Weight-adjusted DG: beyond low order coefficients/geometry

Performance comparisons of BBDG and nodal DG

BBDG: lower FLOPs per second than nodal DG. . .
but maintains throughput/bandwidth as N increases!
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Figure: Profiled FLOPS/s for nodal and Bernstein-Bézier DG methods.
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Figure: Profiled bandwidth for nodal and Bernstein-Bézier DG methods.
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Weight-adjusted DG: beyond low order coefficients/geometry

Roofline model: estimating computational efficiency

Arithmetic intensity: floating-point operations per byte of data.

Computational efficiency: ratio of observed/achievable performance.
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Williams, Waterman, Patterson 2009. Roofline: an insightful visual performance model for multicore architectures.
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Weight-adjusted DG: beyond low order coefficients/geometry

Efficiency comparisons of BBDG and nodal DG

Bernstein-Bézier DG: standard implementation, sparse matrices.

du
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Update kernel

= Dxu︸︷︷︸
Volume kernel

+
∑
faces

Lf (flux)︸ ︷︷ ︸
Surface kernel

, Lf = M−1Mf .
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Weight-adjusted DG: beyond low order coefficients/geometry

Runtime-only comparisons: BBDG, SEM-DG on GPUs
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BBDG 1-1.75× faster per dof than SEM-DG for N ≤ 10.

Unstructured hex meshes: 9(N + 1)3 geometric factors per element.

Disclaimer: hexes are more accurate, need time-to-error studies!
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Weight-adjusted DG: beyond low order coefficients/geometry

Runtime-only comparisons: BBDG, SEM-DG on GPUs

BBDG 1-1.75× faster per dof than SEM-DG for N ≤ 10.

Unstructured hex meshes: 9(N + 1)3 geometric factors per element.

Disclaimer: hexes are more accurate, need time-to-error studies!
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