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High order finite element methods for hyperbolic PDEs

= Aerodynamics applications:
acoustics, vorticular flows,
turbulence, shocks.

= Goal: high accuracy on

unstructured meshes.

= Discontinuous Galerkin
(DG) methods: geometric
flexibility + high order.



Why discontinuous Galerkin methods?
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(a) High order FEM (b) High order DG

High order DG mass matrices: easily invertible for explicit time-stepping.



Why high order accuracy?
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Accurate resolution of propagating vortices and waves.



Why high order accuracy?

2nd, 4th, and 16th order Taylor-Green vortex. Vorticular structures and
acoustic waves are both sensitive to numerical dissipation.

Results from Beck and Gassner (2013).



Why not high order DG methods?
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(a) Exact solution (b) 8th order DG

High order methods blow up for under-resolved solutions
of nonlinear conservation laws (e.g., shocks and turbulence).




Why not high order DG methods?

Time = 0.499675 Time = 0.499675

(a) Exact solution (b) 8th order DG

High order methods blow up for under-resolved solutions
of nonlinear conservation laws (e.g., shocks and turbulence).




Why not high order DG methods?
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(a) Exact solution (b) 8th order DG

High order methods blow up for under-resolved solutions
of nonlinear conservation laws (e.g., shocks and turbulence).




Why not high order DG methods?

Time = 1.067650 Time = 1.067650
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(a) Exact solution (b) 8th order DG

High order methods blow up for under-resolved solutions
of nonlinear conservation laws (e.g., shocks and turbulence).




Why entropy stability for high order schemes?

= High order DG needs

heuristic stabilization (e.g.,
Jan S. Hesthaven

Tim Warburton artificial viscosity, filtering).
[T i AeeuED WATHENA
Nodal Discontinuous = Entropy stable schemes
Galerkin Methods

Algorithms, Analysi,and improve robustness without
Applications no added dissipation.

‘ 132 5 Nonlinear problems

= Turns DG into a “good”
Filter as little as possible .
.. but as much as is needed. hlgh order method (thOUgh
e not 100% bulletproof).

Finite volume methods: Tadmor, Chandrashekar, Ray, Svard, Fjordholm, Mishra, LeFloch, Rohde, ...
High order tensor product elements: Fisher, Carpenter, Gassner, Winters, Kopriva, Persson, ...

High order general elements: Chen and Shu, Crean, Hicken, Del Rey Fernandez, Zingg, ...



Examples of high order entropy stable simulations

Temperature
068 091 11 14 1.6

All simulations are ESDG without artificial viscosity, filtering, or slope limiting.

Bohm et al. (2019). An entropy stable nodal DG method for the resistive MHD equations. Part I.

Dalcin et al. (2019). Conservative and ES solid wall BCs for the compressible NS equations.



Talk outline

1. A brief introduction to entropy stable nodal DG methods

2. Positivity preserving entropy stable nodal DG for compressible
Navier-Stokes (with Yimin Lin)

3. “Modal” entropy stable DG formulations



A brief introduction to entropy
stable nodal DG methods



Entropy stability for nonlinear problems

= Energy balance for nonlinear conservation laws (Burgers’,
shallow water, compressible Euler + Navier-Stokes).

=0.

ot ox

ou  0f(w)

= Continuous entropy inequality: convex entropy function S(u),
“entropy potential” ¥(u), entropy variables v(u)

ou  Of(u)\ _ 0S8
/Q’UT<(,%+ o )—0, v(u)—%

250 (o)), <0




A basic intro to nodal discontinuous Galerkin methods

\ /S

= Multiply by nodal (Lagrange) basis ¢;(z) and integrate

/m (gl; " 82?)) ks /é,DJf*(u*, u”) = f(u))nbi =0

» The numerical flux f*(u™,u™) ~ f(u) enforces boundary

conditions and weak continuity across interfaces.

= Nodal (collocation) DG methods: use Gauss-Lobatto

quadrature nodes for both interpolation and integration.



Matrix formulation of nodal DG methods

= Map integrals to the reference interval D = [-1,1]
hOu a'f(u) . / ®(0+ 20— - —
/Z’<28t+ Oz )EZJr S uT) = f(uT)nli =0

= Matrix formulation: insert u(z,t) = 3_; u;(¢)¢;(z)

M+ Qf(w) + ETB(f* (u* ") —f(u)) = 0.
————

interface flux

where M = %diag(wl, ...,wn+1), and Q, B, E are
differentiation and boundary matrices
L oe; -1 0
i . =
Q’L] 1 8.’1}' 617 |: O 1:| I

B
C[l(=1) ... fysr(=1)
E_[ela) e;ﬂ(n]



Reformulating the flux derivative

= Standard DG methods do not yield an entropy inequality
(inexact quadrature, no discrete chain rule).

= Solution: reformulate the flux derivative matrix term

LI, o
| e~ arw)

= Note that Q1 =0, so Zj Q;; = 0. Thus,

2

central flux

E:Qm () + F(uy) —2§:ngﬂﬁjigﬁ
—_—

= What if we used another numerical flux?

Gassner, Winters, Kopriva (2016). Split form nodal DG schemes with SBP property . . ..



A “flux differencing” formulation

s Let fo be an entropy conservative numerical flux

Ffrc(u,u) = f(u), (consistency)
fEC(’u'v ’I)) = fEC(vv u)v (Symmetr)/)

(vg — vR)TfEC (ur,ur) =11 — g, (entropy conservation).

= Replace the central flux with
(uj
—QZQU i) + Flus N2ZszfEC (ui, uj).

= Compact notation using the Hadamard product

22 Qif pe(ui,uy) = (2(QoF)1),, Fy = fpo(ui,uy).
J

Tadmor (1987). The numerical viscosity of entropy stable schemes for systems of conservation laws.



Example of EC fluxes (compressible Euler equations)

= Define average {{u}} = 3(uz, + ug). In one dimension:

fi(ur,ur) = Lo} {{ul}
fé(ur, ur) = {{ul} f5 + Pave
fg(uLv upR) = (Eavg + pavg) Hul},

_ {io} T LA
PETREE T gy 2

= Non-standard logarithmic mean, “inverse temperature” (3

log _ ur, — UR — ﬁ
tu} log uz, — log ug’ P 2p

Chandreshekar (2013), Kinetic energy preserving and entropy stable finite volume schemes for the compressible
Euler and Navier-Stokes equations.



Extension to multiple elements

= The nodal DG formulation can be rewritten as:

M% +Qf(u) + ETB(f* (ut,u™) —f(u7)) = 0.

interface flux

Fisher and Carpenter (2014), Gassner, Winters, and Kopriva (2016), Chen and Shu (2017), etc.



Extension to multiple elements

= The nodal DG formulation can be rewritten as:

MfT: +2(QoF)1+ETB(f* (uf,u7) —f(u7)) =0.

interface flux

Fisher and Carpenter (2014), Gassner, Winters, and Kopriva (2016), Chen and Shu (2017), etc.



Extension to multiple elements

= The nodal DG formulation can be rewritten as:
du

ME +2(QoF)1+ETB(f* (ut,u”) —f(u7)) =0.

interface flux

» If Q satisfies the summation-by-parts (SBP) property
Q+Q" =E"BE

and if f* (u™,u) is entropy stable (e.g., local Lax-Friedrichs
flux), a quadrature version of the cell entropy inequality holds:

9S(u)
Dk 6t

+ /w <va*(u+’ u") — o (u)) n<0.

Fisher and Carpenter (2014), Gassner, Winters, and Kopriva (2016), Chen and Shu (2017), etc.



Positivity preserving entropy stable
nodal DG for compressible
Navier-Stokes (with Yimin Lin)




Entropy stable schemes require positivity

Entropy stable schemes require positivity of density, pressure
(numerical fluxes depend on logarithm of density, temperature).

Interpretation of Lobotto nodes as a sub-cell finite volume grid.

= Hard to enforce both high order accuracy and positivity.

= Strategy: blend high order method with a first order positive
method to retain subcell resolution.

Rueda-Ramirez, Hennemann, Hindenlang, Winters, Gassner (2021). An entropy stable nodal DG method for the
resistive MHD equations. Part Il: Subcell finite volume shock capturing.



Enforcing positivity: a first order positive subcell scheme

Global matrix formulation using forward Euler time-stepping
(extend to higher order via SSP-RK). Let Q; = —Qy;, f; = f(u;),
and dj; =dj; > 0 for i # j
k+1
m i Z Q;f; — dy(uj—u;) =0.
N

jeN(i algebraic dissipation

Guermond, Popov, and Tomas (2019). Invariant domain preserving discretization-independent schemes and
convex limiting for hyperbolic systems.



Enforcing positivity: a first order positive subcell scheme

Global matrix formulation using forward Euler time-stepping
(extend to higher order via SSP-RK). Let Q; = —Qy;, f; = f(u;),
and dij:dji>0fori7§j
k+1
mi————+ 3 Qyf;— dy(uj—u) =0.
—_——

jeN(5) algebraic dissipation

Use conservation, SBP properties to rewrite using intermediate
“bar states” u; = 3 (u; + u;) — (j;] (f; —f5).

; 2Atd;
%uf“ = Zde u; + Z £,
j#i J#i

Guermond, Popov, and Tomas (2019). Invariant domain preserving discretization-independent schemes and

convex limiting for hyperbolic systems.



Provable positivity under a CFL condition

= Bar states uy resemble a Lax-Friedrichs finite volume update,
and preserve positivity if dj; is sufficiently large

- 1 Q;i
g = = (u; +uy) — == (f; — ), dij > Amax (Ui, u5, Q) .
2 dij
. uf“ is positive (a convex combination of u; and uy;) if
m;
At < min
’ 221;&] dl]

Guermond and Popov (2016). Invariant domains and first-order continuous finite element approximation for
hyperbolic systems.



Our work: extension to compressible Navier-Stokes

= Entropy stable discretization of viscous terms o, which
include the stress 7 + heat conduction gq.

du
Mag+§:QﬁGr—%J—%NW—Uﬁ=0-
j

= Reformulate scheme in terms of viscous bar states:

1 Q

ﬁij = = <Ui+uj) — d.
)

5 ((f;j—oj) — (Fi —04))

= Positivity of p, p under a (viscous) CFL condition with
dj; = max (B(u;), B(v5), Amax(Us, uj, Qz); Amax (U, us, Qj))

(VP (a-np+2p2%¢]r-n—pn]) +plq- n]

Bw) > [v-ml + 3o

Zhang (2017). On positivity-preserving high order DG schemes for the compressible NS equations.



Sparsification of low order matrices

-1 1
" -1 0 1
Q=
-1 0 1
- _1 1_
Q1 =0, Q+Q"=E'BE

summation-by-parts property

= Note: we use sparse SBP operators in the low order method.

Pazner (2021). Sparse invariant domain preserving DG methods with subcell convex limiting.



Sparsification of low order matrices

-1 —-0.5 0 0.5 1

Effect of sparsification on solution dissipation; figure taken from Pazner (2021).

= Note: we use sparse SBP operators in the low order method.

= Algebraic artificial dissipation depends on discretization
matrices = dense operators produce too much diffusion!

Pazner (2021). Sparse invariant domain preserving DG methods with subcell convex limiting.



Blending high and low order DG solutions

= Blend high and low order solutions over each element to
retain accuracy where possible while ensuring positivity.

uk+1 — (1 o g)uk+1,low + Euk+1,high

= Impose minimal local bounds based on low order solution with

relaxation factor a
p > ap”, p > apv, a € [0,1].

= Local entropy inequality: preserved for element-wise blending.

= Local conservation: preserved if high and low order schemes
use the same interface flux.



Convergence tests: LeBlanc and viscous shock tube

N=2 N=5
h L' error Rate L' error Rate
0.02 8.681 x 1072 5.956 x 10~ 2 .
0.01 3.658 x 1072 | 1.25 | 1.436 x 1072 | 2.05
0.005 1.329 x 1072 | 1.46 | 3.630 x 1072 | 1.98
0.0025 | 6.015x 1072 | 1.14 | 1.129 x 10=2 | 1.69
0.00125 | 2.910 x 1072 | 1.05 | 5.889 x 10~* | 0.94

(a) Leblanc shock tube, relaxation factor o = 0.5

N=2 N=3
h L' error Rate L' error Rate

0.025 2.305 x 1072 2.071 x 1072
0.0125 9.858 x 1072 | 1.23 | 6.749 x 1072 | 1.62
0.00625 | 3.382x 1072 | 1.54 | 1.278 x 1072 | 2.40
0.003125 | 5.765 x 10™* | 2,55 | 1.163 x 10~* | 3.45
0.0015625 | 8.836 x 107° | 2.71 | 1.269 x 10~° | 3.20

(b) 1D viscous shock, Re = 1000, relaxation factor o = 0.5

Viscous shock is run at Mach 20 to generate positivity violations.




pic vortex with small minimum density

N =2 N=3 N=4
h L? error Rate L? error Rate L? error Rate

2.5 1.148 x 10° 5.958 x 10~ | 1.28 | 4.073 x 10~ *

125 | 4.865x 107! | 1.24 | 1.905 x 107! | 1.64 | 8987 x 1072 | 2.18
0.625 | 1.223x 107! | 1.99 | 2.308 x 1072 | 3.05 | 1.511 x 1072 | 2.57
0.3125 | 1.706 x 102 | 2.84 | 2.393 x 1072 | 3.27 | 1.915 x 10~* | 6.30

(c) Quadrilateral meshes, relaxation factor & = 0.5
N =2 N=3 N=14
h L? error Rate L? error Rate L? error Rate

25 7.887 x 1071 5.034 x 1071 4.059 x 107!

1.25 | 3.834x 107! | 1.04 | 1.881 x 107! | 1.42 | 9.890 x 102 | 2.04
0.625 | 8.993 x 1072 | 2.09 | 2.944 x 1072 | 2.68 | 1.578 x 102 | 2.65
0.3125 | 1.298 x 1072 | 2.79 | 2.606 x 102 | 3.50 | 4.258 x 107* | 5.21

(d) Triangular meshes, relaxation factor v = 0.5

Challenging vortex parameters: p,.i, = 2.145

105!




Compressible Euler: double Mach reflection

(a) Subcell positivity-preserving entropy stable nodal DG, o = 0.5, T = .2

4

(b) Subcell invariant domain preserving nodal DG (Pazner 2021),

)

'
=,

27

ot

Density for N = 3 entropy stable DG (250 x 875 elements) and a reference solution
(600 x 2400 elements). Note: positivity is sensitive to the wall boundary treatment!

van der Vegt and Ven (2002). Slip flow boundary conditions in dG discretizations of the Euler equations |[...].



Compressuble Euler: Sedov blast wave

(@) a=0.1 (b) «=0.5 (c) @ =0.1 + shock
capturing

Quadrilateral meshes with 1002 degree N = 3 elements.



Compressible Euler: Sedov blast wave

(@) a=0.1 (b) «=0.5 (c) @ =0.1 + shock
capturing

Triangular meshes with 100% degree N = 3 elements.



Compressible Navier-Stokes: Daru-Tenaud shock tube

(a) Reference solution (512M nodes) (b) Degree N = 3, 600 x 300 grid

Comparison with a “grid-converged” reference solution from Guermond
et al. (2022).

Guermond, Kronbichler, Maier, Popov, Tomas (2022). On the implementation of a robust and efficient finite
element-based parallel solver for the compressible Navier-Stokes equations.



Sensitivity to polynomial degree and mesh size

Polynomial degrees N = 1,2, 3 (rows) and 300 x 150,400 x 200, 600 x 300 grid
resolutions (columns). The limiting relaxation factor is & = 0.1.

Daru, Tenaud (2009). Numerical simulation of the viscous shock tube problem by using a high resolution
monotonicity-preserving scheme.



Same setup with positivity parameter o = 0.5.

Hennemann et al. (2021). “A provably ES subcell shock capturing approach for high order split form DG for the
compressible Euler equations”.



ity to limiting parameters (Re =

With Hennemann (2021) shock capturing - similar to Dzanic & Witherden!

Hennemann et al. (2021). “A provably ES subcell shock capturing approach for high order split form DG for the
compressible Euler equations”.



Sensitivity to limiting parameters (Re = 10000)

Same setup with positivity parameter o = 0.5.

Hennemann et al. (2021). “A provably ES subcell shock capturing approach for high order split form DG for the
compressible Euler equations”.



Sensitivity to limiting parameters (Re = 10000)

Positivity parameter a = 0.1 with Hennemann (2021) shock capturing.

Hennemann et al. (2021). “A provably ES subcell shock capturing approach for high order split form DG for the
compressible Euler equations”.



“Modal” entropy stable DG
formulations




Beyond nodal formulations: entropy projection

For non-collocated methods (e.g., staggered
grid, modal), entropy stability requires
interpolating via the “entropy projection”

u=u(lIyv(u))

Iy = L? projection onto degree N polynomials.

= Entropy projection recovers nodal collocation for appropriate
choices of quadrature for the L? projection.

= Entropy stable modal formulations also require boundary
correction terms for high order accuracy (Chan 2018, 2019).

Parsani, Carpenter, Fisher, Nielsen (2016). Entropy stable staggered grid discontinuous spectral collocation
methods of any order for the compressible Navier-Stokes equations.

Fernandez, Crean, Carpenter, Hicken (2019). Staggered-grid entropy-stable multidimensional
summation-by-parts discretizations on curvilinear coordinates.

Pazner, Persson (2019). Analysis and entropy stability of the line-based discontinuous Galerkin method.



lllustration of the entropy projection

0
o
(a) p (b) u (e) p
Primitive variables p, u, p and their entropy projection.
0s
.
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(d) U1 (e) V2 (f) V3

Entropy variables and their L? projection.



lllustration of the entropy projection
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lllustration of the entropy projection

0
o
(a) p (b) u (e) p
Primitive variables p, u, p and their entropy projection.
0s
.
5.787 26
57“710 05 0.0 05 10 7”710 05 0.0 05 1.0 727710 05 0.0 05 1.0

(d) U1 (e) V2 (f) V3

Entropy variables and their L? projection.



This section uses the Julia library Trixi.jl, adaptive explicit RK

106
2 T T T
—@— FLUXO (Fortran) —4— Trixi.jl Py
o
8 15 .
w
o
[a]
> 10 i
I
x
=
0
E 05
[=
0 | | | H

Polynomial degree

Ranocha, et al. (2021). Optimized RK Methods with Auto. Step Size Control for Compressible CFD.



Differences in ESDG robustness for compressible Euler

2.5

(a) Degree N = 3 and a 64 x 64 mesh. (b) Degree N =7 and a 32 x 32 mesh.

Density at time 7" = 10 for the Kelvin-Helmholtz instability using an
entropy stable DG method with entropy projection.



Differences in ESDG robustness for compressible Euler

Peee 1| 2 | 3| 4| 5| 6 | 7
Solver
Collocation 15 | 481 | 3.77 | 4.43 | 3.74 | 3.37 | 3.64
Entropy projection 15 15 15 15 15 15 15
Neens = 16
Pgee 1| 2 | 3| 4| 5| 6| 7
Solver
Collocation 15 | 412 | 3.65 | 4.27 | 3.54 | 3.66 | 3.56
Entropy projection 15 15 15 15 15 15 15
Neens = 32

End times for the Kelvin-Helmholtz instability on quadrilateral meshes.

Blue indicates stable simulations, while red indicate crashes.




Differences in ESDG robustness for compressible Euler

Degree

Solver

Collocation 15 [ 3.98 | 3.44 | 299 | 2.94 | 3.13
Entropy projection 15 15 15 15 15 15

Neens = 16

Degree 1 2 | 3| 4| 5 | 6

Solver

Collocation 3.919 | 3.45 | 3.19 | 296 | 3.06 | 3.27
Entropy projection 15 15 15 15 15 15

Neens = 32

End times for the Kelvin-Helmholtz instability on triangular meshes. Blue
indicates stable simulations, while red indicate crashes.



Similar behavior for Rayleigh-Taylor, Richtmeyer-Meshkov

(@t=125 (b)t=15 (c)t=175 (d)t=2 (e)t=25

Rayleigh-Taylor instability: N = 3 entropy projection DG, 32 x 128 elements.



Similar behavior for Rayleigh-Taylor, Richtmeyer-Meshkov

Degree | 9 | 2| 3| 4| 5 | 6 | 7

Solver

Collocation 3.67 |34 (333|326 | 311 | 3.03 | 3.04
Entropy projection 15 15 15 15 15 15 15

RTI, quadrilateral mesh, Ncejjs = 16

Degree || 4 2 | 3 | 4|5 |6 | 7

Solver

Collocation 400 | 3.14 | 3.44 | 3.16 | 3.03 | 297 | 2.98
Entropy projection 15 15 15 15 15 15 15

RTI, quadrilateral mesh, Nccjis = 32

End times for the Rayleigh-Taylor instability. Blue indicates stable
simulations, while red indicate crashes.



Similar behavior for Rayleigh-Taylor, Richtmeyer-Meshkov

(@)t=75 (b)t=15 (c)t=20 (d)t=25

Richtmeyer-Meshkov instability using N = 3 entropy projection DG with
32 x 96 elements. Entropy projection is stable up to 7" = 50; entropy

stable collocation crashes at T ~ 20.1.



Similar behavior for Rayleigh-Taylor, Richtmeyer-Meshkov

Pegee 1 | 2| 3 4 5 6 | 7

Solver

Collocation 30 | 30 | 27.96 | 24.94 | 8.851 | 8.853 | 8.85
Entropy projection 30 | 30 30 30 30 30 30

RMI, quadrilateral mesh, Nie;s = 16

. Pegree 1| 2 3 4 5 6 | 7

Collocation 30 | 25.52 | 23.34 | 8.759 | 7.808 | 7.014 | 7.01
Entropy projection 30 30 30 30 30 30 30

RMI, quadrilateral mesh, Ncops = 32

End times for the Richtmeyer-Meshkov instability. Blue indicates stable
simulations, while red indicate crashes.




Similar behavior is observed for ideal magento-hydrodynamics

7 | TS

- s
10 1.0
0.5 0.5

Density for entropy stable Gauss DG at time 7"= 10 Density for entropy stable Gauss DG at time 7' = 10
(degree N =3 and a 64 x 64 mesh). (degree N =7 and a 32 x 32 mesh).

~

Solution snapshots for a weakly magnetized Kelvin-Helmholtz instability
using an entropy stable Gauss DG scheme on uniform quadrilateral
meshes.



Similar behavior is observed for ideal magento-hydrodynamics

Degree || 1 | 5 | 3 4 5 6 7

Solver

Collocation 15 | 15 | 11.50 | 10.99 | 10.32 | 10.23 | 10.27
Entropy projection 15 | 15 15 15 15 15 15

MHD KHI, quadrilateral mesh, Ncejjs = 16

Degree || 1 | o 5 4 5 6 7

Solver

Collocation 15| 11.64 | 11.05 | 11.11 | 11.48 | 10.17 | 10.92
Entropy projection 15 15 15 15 15 15 15

MHD KHI, quadrilateral mesh, N¢q15 = 32

End times for the magnetized Kelvin-Helmholtz instability. Blue indicates
stable simulations, while red indicate crashes.



Similar behavior is observed for ideal magento-hydrodynamics

Degree 1 2 3 4 5 6

Solver

Collocation 12.85 | 13.78 | 10.63 | 10.21 | 10.99 | 9.97
Entropy projection 15 15 15 15 15 15

MHD KHI, triangular mesh, Ncons = 16

Degree 1 2 3 4 5 6

Solver

Collocation 1488 | 11.12 | 9.75 | 10.08 | 10.31 | 10.22
Entropy projection 15 15 15 15 15 15

MHD KHI, triangular mesh, Ncojs = 32

End times for the magnetized Kelvin-Helmholtz instability. Blue indicates
stable simulations, while red indicate crashes.



Why not just use shock capturing and positivity limiting?

We compare entropy projection DG to
two state-of-the-art schemes:

= DGSEM-SC-PP: very light entropy
stable shock capturing +

i i Zhang-Shu positivity limiting.

-1.0 0.0 1.0

= DGSEM-subcell: positivity and

. shock capturing using subcell
Interpretation of Lobotto nodes P g g

as a sub-cell finite volume grid. limiting (not entropy stable).

Hennemann, Ruéda-Ramirez, Hindenlang, Gassner (2021). A provably entropy stable subcell shock capturing
approach for high order split form DG for the compressible Euler equations.

Ruéda-Ramirez, Pazner, Gassner (2022, preprint). Subcell limiting strategies for DGSEM.



Application: under-resolved “turbulent” flows

~

DGSEM-SC-PP pressure DGSEM-subcell pressure Gauss pressure

Kelvin-Helmholtz instability at T,.1 = 25 on a N = 3, 64% mesh.



Application: under-resolved “turbulent” flows

DGSEM-subcell density Gauss density

3.0
2.5
2.0
1.5
. 4 s
DGSEM-SC-PP pressure DGSEM-subcell pressure Gauss pressure

Kelvin-Helmholtz instability at T,.1 = 25 on a N = 7, 322 mesh.



Under-resolved “turbulence” is sensitive to extra dissipation

10° 10°

10° 100

- Gauss - Gauss

DGSEM-Subcell ¥ DGSEM-Subcell
- DGSEM-SC-PP - DGSEM-SC-PP
0o } oo

10~ 10~
1005 1010 1015 1020 1005 1010 1015 1020
2 2
N =3 mesh of 64" elements N =7 mesh of 32" elements

= Sample with (N 4 1) x number of elements points (uniformly
spaced to avoid element interfaces) along each dimension.

= Compute Fourier modes of velocity weighted by ,/p, sum
energy over “effective wavenumbers” for a 1D power spectra.



Conclusion

= Positivity preserving limiters enable robust entropy stable
nodal DG simulations of compressible flow.

= The “entropy projection” appears to improve robustness for
under-resolved flows.

This work is supported by DMS-1943186.
Thank you! Questions?

Chan, Ranocha, Rueda-Ramirez, Gassner, Warburton (2022). On the entropy projection and the robustness of
high order entropy stable discontinuous Galerkin schemes for under-resolved flows.

Lin, Chan, Tomas (2022). A positivity preserving strategy for entropy stable discontinuous Galerkin
discretizations of the compressible Euler and Navier-Stokes equations.
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Robustness depends on the Atwood number

. 10 - 10 |
o
>
2
G
& 5r 1 5 |
E
=
'g —0— Collocation —0— Collocation
w 0 H —{— Entropy projection B 0 —{}— Entropy projection Bl
T T T | T T T |
0.2 04 06 0.8 02 04 06 0.8
Atwood number A Atwood number A

(a) N =3, 32 x 32 quad mesh (b) N =7, 16 x 16 quad mesh

= Entropy stable collocation DG is robust when density is
near-constant, but crashes at higher Atwood numbers

A= (p2—p1)/(pr+p2), A€0,1).

= Entropy projection is stable up to A ~ .8.



Why the difference in robustness?

(AN 10U SPOT ALL 5 OiFFERENCES BETWEEN
THESE TWO discretizations ?

= Both are entropy stable, but Gauss collocation increases
quadrature accuracy (reduces aliasing).

= Gauss introduces interface corrections and entropy projection.

Figures courtesy of https://besrc.ca/kids/spot-the-difference/.



Why would the entropy projection improve robustness?

k=1, pux=1/10

7.5

7.5 3
/\ 7.5

5.0 5.0 5.0

2.5 2.5
N
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
‘ - - Polynomial projection of density — Entropy-projected density |

Some clues: entropy projection uses L? projection of entropy variables,
amplifies effects of under-resolution and near-zero density or pressure.




Evolution of differences between the conservative variables and

entropy projected variables

Norm of diff: cons vars and entropy projection Norm of diff: entropy vars and L2 projection
Gauss Gauss

03
0.020

0.015
02

0.010

01
0.005

0.0 - 0.000
[ 2 4 6 [ 2 4 6

Difference over time between the conservative and entropy projected
variables ||w — u|| ;. for collocation and entropy projection schemes.

If u ~ u, the mapping between conservative and entropy variables
is well-posed = the density and pressure are positive?



“Hybridization” for efficient interface coupling

= Hybridized SBP operators involve both volume/face nodes.

QL Q-Q" E'B
"5 -BE B |’

» Let g(z) be a function. We can approximate % via

Lo (3 o)

where x4, Xy are volume and face nodes, V,, V; are volume
and face interpolation matrices.

= Equivalent to adding error-reducing correction terms of the
form "Ef(u) — f(Eu)".



Entropy stable schemes using hybridized SBP operators

= Replace SBP operator with hybridized SBP operator

Mi—:+2(Qo F)1+E"B(f* — f(u)) = 0.

Chan (2019). Skew-symmetric entropy stable modal discontinuous Galerkin formulations.

Chan (2018). On discretely entropy conservative and entropy stable discontinuous Galerkin methods.



Entropy stable schemes using hybridized SBP operators

= Replace SBP operator with hybridized SBP operator

du |V
19 q
Mo {V/,

i
o } (Quo F)1+ VB (f* — f(u)) = 0.

Chan (2019). Skew-symmetric entropy stable modal discontinuous Galerkin formulations.

Chan (2018). On discretely entropy conservative and entropy stable discontinuous Galerkin methods.



Entropy stable schemes using hybridized SBP operators

= Replace SBP operator with hybridized SBP operator

du V,
dt

,,
w1V @uom 1 V7B (- g 0.

= F is the matrix of flux evaluations using solution values at
both volume and face nodes + entropy projection:

Fij = fS (Gz, GJ) R u = evaluate u (HN’U(U)) .

Chan (2019). Skew-symmetric entropy stable modal discontinuous Galerkin formulations.

Chan (2018). On discretely entropy conservative and entropy stable discontinuous Galerkin methods.



Entropy stable schemes using hybridized SBP operators

= Replace SBP operator with hybridized SBP operator

du |V
19 q
Mo {V/,

i
o } (Quo F)1+ VB (f* — f(u)) = 0.

= F is the matrix of flux evaluations using solution values at
both volume and face nodes + entropy projection:

Fij = fS (Iiz, Gj) R u = evaluate u (HN’U(U)) .

= Entropy stable if Q;1 = 0 (true under weak conditions on
quadrature accuracy).

Chan (2019). Skew-symmetric entropy stable modal discontinuous Galerkin formulations.

Chan (2018). On discretely entropy conservative and entropy stable discontinuous Galerkin methods.



Estimated cost for DGSEM and Gauss

-10%
9 — | | _
JODGSEM =
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Degree N

Figure 1: Comparison of 3D entropy stable DGSEM and entropy stable
Gauss collocation in terms of two-point numerical flux evaluations.



Actual cost comparison for DGSEM and Gauss

2D 3D
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Performance index (PID) for entropy stable Gauss collocation.



Cost comparison of different implementations

Time/RHS/DOF [sec]

Trixi jl, SBP —=— Trixi.jl, GaussSBP —4— Trixi jl, P4estMesh —+— FLUXO, GaussSBP

1077

Polynomial degree
(a) 2D,

Time/RHS/DOF [sec]

0.5

107°
+2
o ‘
¥ -
. | N : : : 4 -
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14
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Polynomial degree
(b) 3D.

Runtime per RHS evaluation for different implementations of entropy

stable DGSEM and Gauss collocation.



Does the entropy projection also help “bad” DG schemes?

Entropy stable Gauss collocation DGSEM with face-based entropy DGSEM with volume-based
projection entropy projection

Degree N = 3 and 64 x 64 grid Kelvin-Helmholtz simulations at 7' = 5.
All methods run until 7' = 25, while DGSEM crashes at 7' =~ 3.5.

“Variant” schemes introduce entropy projection, but have
similar or lower quadrature accuracy compared with DGSEM.



Improved robustness is not due to interface dissipation

Degree | 1 1 2| 3| 4| 5 6 | 7

Solver

Collocation 201 20 | 20 | 20 | 6.035 | 5.29 | 5.02
Entropy projection 201 20 | 20 | 20 20 20 20

— Q3
Ncclls =8

End times for entropy conservative simulations of the Taylor-Green vortex on
hex meshes. Blue indicates stable simulations, while red indicate crashes.

We observe differences in robustness even for entropy conservative
schemes (no entropy dissipation).



Improved robustness is not (only) due to quadrature accuracy

10 10
5]
= 8 8
2
S 6 6
i
£
= 4 4
3 —o— DGSEM —o—  DGSEM
= -0 Gauss M -0 Gauss
2 —a— Face variant 2 —a— Face variant
—4— Volume variant —4— Volume variant
0 0
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Atwood number A Atwood number A
N = 3, 32 x 32 quadrilateral mesh N =17, 16 x 16 quadrilateral mesh

Entropy projection is not the only factor: “bad” entropy projection
variant schemes improve robustness, but not as much.
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