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Constructing stable projection-based reduced order models

• ROMs do not inherit FOM stability for nonlinear
convection-dominated flows.

• Can lead to non-physical solution growth or blow-up, esp. for
under-resolved features (e.g., shocks or turbulence).

Figure adapted from Brunton, Proctor, Kutz (2016), Discovering governing equations from data . . . .



3 / 21

Nonlinear conservation laws and entropy inequalities

• Nonlinear conservation laws: Burgers’, shallow water,
compressible Euler + Navier-Stokes.

∂u

∂t
+
∂f(u)

∂x
= 0.

• Continuous entropy inequality w.r.t. convex entropy function
S(u), “entropy potential” ψ(u), entropy variables v(u)∫

Ω
vT

(
∂u

∂t
+
∂f(u)

∂x

)
= 0, v(u) =

∂S

∂u

=⇒
∫

Ω

∂S(u)

∂t
+
(
vTf(u)− ψ(u)

)∣∣1
−1
≤ 0.

• Goal: ensure ROM satisfies a discrete entropy inequality.
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FOM: entropy conservative finite volume methods

• Finite volume scheme:

dui
dt

+
fS(ui+1,ui)− fS(ui+1,ui)

h
= 0.

• If fS is an entropy conservative numerical flux

fS(u,u) = f(u), (consistency)

fS(u,v) = fS(v,u), (symmetry)

(vL − vR)
T fS (uL,uR) = ψL − ψR, (conservation).

then the numerical scheme conserves entropy∫
Ω

∂S(u)

∂t
≈
∑
i

h
dS(ui)

dt
= 0.

Tadmor (1987). The numerical viscosity of entropy stable schemes for systems of conservation laws.
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FOM: entropy stable finite volume methods

• Finite volume scheme with diffusion d(u):

dui
dt

+
fS(ui+1,ui)− fS(ui+1,ui)

h
= d(u).

• If fS is an entropy conservative numerical flux

fS(u,u) = f(u), (consistency)

fS(u,v) = fS(v,u), (symmetry)

(vL − vR)
T fS (uL,uR) = ψL − ψR, (conservation).

then the numerical scheme dissipates entropy∫
Ω

∂S(u)

∂t
≈
∑
i

h
dS(ui)

dt
= ṽTd(u) ≤ 0.

Tadmor (1987). The numerical viscosity of entropy stable schemes for systems of conservation laws.
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Matrix reformulation using Hadamard products

Hadamard product of two matrices A ◦ BA11 . . . A1n
...

. . .
...

An1 . . . Ann

◦
B11 . . . B1n

...
. . .

...
Bn1 . . . Bnn

 =

A11B11 . . . A1nB1n
...

. . .
...

An1Bn1 . . . AnnBnn

 .
Rewrite a periodic finite volume scheme as

d

dt


u1

u2
...

uN

+
1

h


fS(u1,u2)− fS(uN ,u1)

fS(u2,u3)− fS(u1,u2)
...

fS(uN ,u1)− fS(uN−1,uN )

 = 0.
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Rewrite a periodic finite volume scheme as

h
d

dt


u1

u2
...

uN

+


F1,2 − F1,N

F2,3 − F2,1
...

FN,1 − FN,N−1

 = 0, Fij = fS(ui,uj).
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 =




0 1 −1
−1 0 1

. . . . . . 1

1 −1 0


︸ ︷︷ ︸

2Q

◦

F1,1 . . . F1,N
...

. . .
...

FN,1 . . . FN,N


︸ ︷︷ ︸

F

 1.
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Interpretation using finite difference matrices

Let M = hI. Can reformulate entropy conservative finite volumes as

M
du

dt
+ 2 (Q ◦ F) 1 = 0, Q =

1

2


0 1 −1
−1 0 1

. . . . . . 1

1 −1 0


Key observation: generalizable beyond finite volumes

Entropy conservation for any Q = −QT︸ ︷︷ ︸
skew-symmetry

and Q1 = 0︸ ︷︷ ︸
conservative

!

Note that M−1Q is a periodic differentiation matrix.
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Naive POD-Galerkin procedure

• Assume a POD basis s.t. u ≈ VuN . Galerkin projection gives

VTMV
duN
dt

+ 2VT (Q ◦ F) 1 = 0.

• Test with projection of entropy variables for discrete entropy
balance. Let V† = pseudoinverse, ṽ = VV†v (VuN )(

V†v (VuN )
)T (

VTMV
duN
dt

+ VT (Q ◦ F) 1
)

= 0

=⇒ 1TM
dS (VuN )

dt︸ ︷︷ ︸
rate of change - avg. entropy

+ṽT 2 (Q ◦ F) 1 = 0.
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Entropy projection and discrete entropy stability

• Loss of entropy conservation: ṽ = VV†v (VuN ) 6= v(VuN )

ṽT 2 (Q ◦ F) 1 =
∑
ij

Qij (ṽi − ṽj)
T fS (ui,uj)

6=
∑
ij

Qij (ψ(ui)− ψ(uj)) = 0.

• Restore entropy conservation by re-evaluating ũ = u (ṽ).

VTMV
duN
dt

+ 2VT (Q ◦ F) 1 = 0, (F)ij = fS (ũi, ũj) .

For accuracy, we compute POD basis from snapshots of both
conservative and entropy variables.

• All results use Laplacian art. viscosity εKu for entropy stability.
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Evaluating nonlinear ROM terms dominates costs

Cost of nonlinear terms still scales with FOM size.

ũ = u
(
VV†v (VuN )

)
, 2 (Q ◦ F) 1

• Hyper-reduction approximate
nonlinear evaluations.

VTg(VuN ) ≈
V(I, :)T︸ ︷︷ ︸

sampled rows

Wg(V(I, :)uN )

• Examples: gappy POD, DEIM,
empirical cubature, ECSW, . . .

Farhat et al. Bui/Willcox, Chantarantabut/Sorensen, Patera/Yano, Hernandez et al., . . .
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Two-step hyper-reduction: compress and project

(Q ◦ F) ≈ (Qs ◦ F). Must preserve Qs = −QT
s and Qs1 = 0!

1. Compress Q onto an expanded “test” basis Vt

VT
t QVt, Vt = orth

([
V 1 QV

])
2. Hyper-reduced projection to determine test basis coefficients

Mt = Vt(I, :)TWVt(I, :), Pt = M−1
t Vt(I, :)TW.

3. Define hyper-reduced matrix Qs

Qs = PT
t

(
VT

t QVt

)
Pt.

=⇒ Qs is skew-symmetric, conservative, and accurate.

Hernandez et al. (2017). Dimensional hyper-reduction of nonlinear FE models via empirical cubature.

Carlberg, Barone, Antil (2017). Galerkin v. LSPG projection in nonlinear model reduction.
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A hyper-reduced entropy conservative ROM

• Approx. integrals of target space of inner products of POD
basis (most accurate + smallest number of points in practice)

Target space = span {φi(x)φj(x), 1 ≤ i, j ≤ N} .

• Add “stabilizing” points to avoid singular test mass matrix Mt.

• Entropy stable reduced order model with hyper-reduction:

V(I, :)TWV(I, :)duN
dt

+ 2V(I, :)T (Qs ◦ F) 1 = 0,

Fij = fS (ũi, ũj) , ũ = u (V(I, :)Pv (VuN )) ,

where P is the projection onto POD modes.

Hernandez et al. (2017). Dimensional hyper-reduction of nonlinear FE models via empirical cubature.
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Non-periodic boundary conditions

• Impose BCs via FV fluxes + summation-by-parts operators.

• In 2D and 3D, entropy stability requires a discrete
integration-by-parts property involving surface interpolation
matrix Vf + hyper-reduced surface weights wf .

VT
t Q

T
x 1 = VT

f (nx ◦wf ) ,

VT
t Q

T
y 1 = VT

f (ny ◦wf ) .

Enforce conditions using constrained hyper-reduction + LP.

Patera and Yano (2017). An LP empirical quadrature procedure for parametrized functions.

Chan (2018). On discretely entropy conservative and entropy stable discontinuous Galerkin methods.

Chan (2019). Skew-symmetric entropy stable modal discontinuous Galerkin formulations.
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1D Euler with reflective BCs + shock

(a) 25 modes, T = .25 (b) 25 modes, T = .75

FOM with 2500 points, viscosity ε = 2× 10−4, ROM with 25, 75, 125 modes.

Number of modes N 25 75 125 175

Number of empirical cubature points 54 158 259 355
Number of stabilizing points 3 21 36 28
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1D Euler with reflective BCs + shock

(a) 75 modes, T = .25 (b) 75 modes, T = .75

FOM with 2500 points, viscosity ε = 2× 10−4, ROM with 25, 75, 125 modes.

Number of modes N 25 75 125 175

Number of empirical cubature points 54 158 259 355
Number of stabilizing points 3 21 36 28
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1D Euler with reflective BCs + shock

(a) 125 modes, T = .25 (b) 125 modes, T = .75

FOM with 2500 points, viscosity ε = 2× 10−4, ROM with 25, 75, 125 modes.

Number of modes N 25 75 125 175

Number of empirical cubature points 54 158 259 355
Number of stabilizing points 3 21 36 28
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Error with and without hyper-reduction

Error over time for a K = 2500 FOM and ROM with 25, 75, 125 modes.
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Entropy conservation test

(a) Density ρ (125 modes, no
viscosity)

(b) Convective entropy contribution

Figure 1: Reduced order solution and discrete entropy production∣∣∣ṽTV (I, :)T (2Qs ◦ F)1
∣∣∣ when setting ε = 0 (zero viscosity).



16 / 21

2D Kelvin-Helmholtz instability

(a) Density, full order model (b) Reduced order model

FOM with 200× 200 points, viscosity ε = 10−3. ROM with 75 modes,
884 reduced points (no stabilizing points), 1.02% rel. L2 error at T = 3.
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2D Kelvin-Helmholtz instability

(c) Density, full order model (d) ROM w/reduced quad. points

FOM with 200× 200 points, viscosity ε = 10−3. ROM with 75 modes,
884 reduced points (no stabilizing points), 1.02% rel. L2 error at T = 3.



17 / 21

2D Gaussian pulse with reflective wall

(a) Density, full order model (b) Reduced order model

FOM with 100× 100 grid points, viscosity ε = 10−3. ROM with 25

modes, 306 volume points (one stabilizing point), 82 surface points,
.57% relative error at T = .25.
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2D Gaussian pulse with reflective wall

(c) Density, full order model (d) ROM w/reduced quad. points

FOM with 100× 100 grid points, viscosity ε = 10−3. ROM with 25

modes, 306 volume points (one stabilizing point), 82 surface points,
.57% relative error at T = .25.
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2D Riemann problem on periodic domain

(a) Full order model (b) Reduced order model, 50 modes

FOM with 200× 200 points, viscosity ε = 5× 10−3, T = .25. ROM with
50 modes, 812 reduced quadrature points (no stabilizing points), 3.278%
relative L2 error.
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2D Riemann problem on periodic domain

(c) Full order model (d) ROM w/reduced quad. points

FOM with 200× 200 points, viscosity ε = 5× 10−3, T = .25. ROM with
50 modes, 812 reduced quadrature points (no stabilizing points), 3.278%
relative L2 error.
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Time-explicit entropy stable ROMs can be more expensive

Explicit-in-time: compute (Q ◦ F) 1 ⇒
∑

j QijfS(ui,uj) on the fly.

Qs smaller but dense: (Qs ◦ F) 1 can be more expensive!

Current directions: implicit time-stepping (leverage recent work on
efficient computation of entropy stable Jacobian matrices).
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Computational timings for Jacobians

Jacobian timings for Burgers’ equation and matrices Q ∈ RN×N .

N = 10 N = 25 N = 50

Direct automatic differentiation 5.666 60.388 373.633
FiniteDiff.jl 1.429 17.324 125.894

Jacobian formula (analytic deriv.) .209 1.005 3.249
Jacobian formula (AD flux deriv.) .210 1.030 3.259
One explicit RHS eval. (reference) .120 .623 2.403

Chan, Taylor (2020). Efficient computation of Jacobian matrices for ES-SBP schemes.
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Summary and future work

• Entropy stable modal formulations and reduced order modeling
improve robustness while retaining accuracy.

• Current work: implicit time-stepping.

This work is supported by the NSF under awards
DMS-1719818, DMS-1712639, and DMS-CAREER-1943186.

Thank you! Questions?

Chan, Taylor (2020). Efficient computation of Jacobian matrices for ES-SBP schemes.

Chan (2020). Entropy stable reduced order modeling of nonlinear conservation laws.

Chan (2018). On discretely entropy conservative and entropy stable discontinuous Galerkin methods.
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Additional slides
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Example of EC fluxes (compressible Euler equations)

• Define average {{u}} = 1
2(uL + uR). In one dimension:

f1
S(uL,uR) = {{ρ}}log {{u}}
f2
S(uL,uR) = {{u}} f1

S + pavg

f3
S(uL,uR) = (Eavg + pavg) {{u}} ,

pavg =
{{ρ}}
2 {{β}}

, Eavg =
{{ρ}}log

2 {{β}}log (γ − 1)
+

1

2
uLuR.

• Non-standard logarithmic mean, “inverse temperature” β

{{u}}log =
uL − uR

log uL − log uR
, β =

ρ

2p
.

Chandreshekar (2013), Kinetic energy preserving and entropy stable finite volume schemes for the
compressible Euler and Navier-Stokes equations.
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Accuracy of the expanded test basis

• If Vt = orth
([

V 1
])

, then the modes Vt can sample QV

very poorly, e.g., VT
t QVt ≈ 0!

(a) Shock snapshots (b) Modes (V columns) (c) Mode derivatives QV

• Fix: further expand the test basis Vt by adding QV

Vt = orth
([

V 1 QV
])
, VT

t QVt ∈ R(2N+1)×(2N+1).

Carlberg, Barone, Antil (2017). Galerkin v. LSPG projection in nonlinear model reduction.
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Current methods for computing Jacobian matrices

Figure from Gebremedhin, Manne, Pothen
(2005), What color is your Jacobian? Graph
coloring for computing derivatives.

• Implicit time-stepping: compute
Jacobian matrices using
automatic differentiation (AD)

• Graph coloring reduces costs,
but only for sparse matrices

• Cost of AD scales with input
and output dimensions.
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Jacobian matrices for flux differencing (with C. Taylor)

Theorem

Assume Q = ±QT . Consider a scalar “collocation” discretization

r(u) = (Q ◦ F) 1, Fij = fS(ui,uj).

The Jacobian matrix is then

dr

du
= (Q ◦ ∂FR)± diag

(
1T (Q ◦ ∂FR)

)
,

(∂FR)ij =
∂fS(uL, uR)

∂uR

∣∣∣∣
ui,uj

.

AD is efficient for O(1) inputs/outputs!
Separates discretization matrix Q and AD for flux contributions
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Singular value decay with entropy variable enrichment

(d) KH instability
(75 modes used)

(e) Gaussian pulse
(25 modes used)

(f) Riemann problem
(50 modes used)

Decay of solution snapshot singular values with entropy variable
enrichment is slower for transport or shock solutions.
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Singular value decay with entropy variable enrichment

(g) KH instability
(75 modes used)

(h) Gaussian pulse
(25 modes used)

(i) Riemann problem
(50 modes used)

Decay of solution snapshot singular values with entropy variable
enrichment is slower for transport or shock solutions.
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