# Entropy stable reduced order modeling of nonlinear conservation laws

Jesse Chan Dept. of Computational and Applied Mathematics Rice University

SIAM CSE minisymposium: reduced order model stabilizations and closures

# Constructing stable projection-based reduced order models



- ROMs do not inherit FOM stability for nonlinear convection-dominated flows.
- Can lead to non-physical solution growth or blow-up, esp. for under-resolved features (e.g., shocks or turbulence).

Figure adapted from Brunton, Proctor, Kutz (2016), Discovering governing equations from data .... 2/21

• Nonlinear conservation laws: Burgers', shallow water, compressible Euler + Navier-Stokes.

$$\frac{\partial \boldsymbol{u}}{\partial t} + \frac{\partial \boldsymbol{f}(\boldsymbol{u})}{\partial x} = 0.$$

• Continuous entropy inequality w.r.t. convex entropy function S(u), "entropy potential"  $\psi(u)$ , entropy variables v(u)

$$\int_{\Omega} \boldsymbol{v}^T \left( \frac{\partial \boldsymbol{u}}{\partial t} + \frac{\partial \boldsymbol{f}(\boldsymbol{u})}{\partial x} \right) = 0, \qquad \boldsymbol{v}(\boldsymbol{u}) = \frac{\partial S}{\partial \boldsymbol{u}}$$
$$\implies \int_{\Omega} \frac{\partial S(\boldsymbol{u})}{\partial t} + \left( \boldsymbol{v}^T \boldsymbol{f}(\boldsymbol{u}) - \psi(\boldsymbol{u}) \right) \Big|_{-1}^1 \le 0.$$

Goal: ensure ROM satisfies a discrete entropy inequality.

• Nonlinear conservation laws: Burgers', shallow water, compressible Euler + Navier-Stokes.

$$\frac{\partial \boldsymbol{u}}{\partial t} + \frac{\partial \boldsymbol{f}(\boldsymbol{u})}{\partial x} = 0.$$

• Continuous entropy inequality w.r.t. convex entropy function S(u), "entropy potential"  $\psi(u)$ , entropy variables v(u)

$$\int_{\Omega} \boldsymbol{v}^T \left( \frac{\partial \boldsymbol{u}}{\partial t} + \frac{\partial \boldsymbol{f}(\boldsymbol{u})}{\partial x} \right) = 0, \qquad \boldsymbol{v}(\boldsymbol{u}) = \frac{\partial S}{\partial \boldsymbol{u}}$$
$$\implies \int_{\Omega} \frac{\partial S(\boldsymbol{u})}{\partial t} + \left( \boldsymbol{v}^T \boldsymbol{f}(\boldsymbol{u}) - \psi(\boldsymbol{u}) \right) \Big|_{-1}^1 \le 0.$$

• Goal: ensure ROM satisfies a discrete entropy inequality.

#### FOM: entropy conservative finite volume methods

• Finite volume scheme:

$$\frac{\mathrm{d}\mathbf{u}_i}{\mathrm{d}t} + \frac{\mathbf{f}_S(\mathbf{u}_{i+1},\mathbf{u}_i) - \mathbf{f}_S(\mathbf{u}_{i+1},\mathbf{u}_i)}{h} = \mathbf{0}.$$

• If  $f_S$  is an entropy conservative numerical flux

$$egin{aligned} &oldsymbol{f}_S(oldsymbol{u},oldsymbol{u}) = oldsymbol{f}(oldsymbol{u}), & ext{(consistency)} \ &oldsymbol{f}_S(oldsymbol{u},oldsymbol{v}) = oldsymbol{f}_S(oldsymbol{v},oldsymbol{u}), & ext{(symmetry)} \ &(oldsymbol{v}_L - oldsymbol{v}_R)^T oldsymbol{f}_S(oldsymbol{u}_L,oldsymbol{u}_R) = \psi_L - \psi_R, & ext{(conservation)}. \end{aligned}$$

then the numerical scheme conserves entropy

$$\int_{\Omega} \frac{\partial S(\mathbf{u})}{\partial t} \approx \sum_{i} h \frac{\mathrm{d}S(\mathbf{u}_{i})}{\mathrm{d}t} = 0.$$

Tadmor (1987). The numerical viscosity of entropy stable schemes for systems of conservation laws. 4/21

#### FOM: entropy stable finite volume methods

• Finite volume scheme with diffusion **d**(**u**):

$$\frac{\mathrm{d}\mathbf{u}_i}{\mathrm{d}t} + \frac{\mathbf{f}_S(\mathbf{u}_{i+1},\mathbf{u}_i) - \mathbf{f}_S(\mathbf{u}_{i+1},\mathbf{u}_i)}{h} = \mathbf{d}(\mathbf{u}).$$

• If  $f_S$  is an *entropy conservative* numerical flux

$$egin{aligned} &oldsymbol{f}_{S}(oldsymbol{u},oldsymbol{u}) = oldsymbol{f}(oldsymbol{u}), & ext{(consistency)} \ &oldsymbol{f}_{S}(oldsymbol{u},oldsymbol{v}) = oldsymbol{f}_{S}(oldsymbol{v},oldsymbol{u}), & ext{(symmetry)} \ &(oldsymbol{v}_{L}-oldsymbol{v}_{R})^{T} oldsymbol{f}_{S}(oldsymbol{u}_{L},oldsymbol{u}_{R}) = \psi_{L} - \psi_{R}, & ext{(conservation)}. \end{aligned}$$

then the numerical scheme dissipates entropy

$$\int_{\Omega} \frac{\partial S(\mathbf{u})}{\partial t} \approx \sum_{i} h \frac{\mathrm{d}S(\mathbf{u}_{i})}{\mathrm{dt}} = \widetilde{\mathbf{v}}^{T} \mathbf{d}(\mathbf{u}) \leq 0.$$

Tadmor (1987). The numerical viscosity of entropy stable schemes for systems of conservation laws. 4/21

$$\begin{bmatrix} \mathbf{A}_{11} & \dots & \mathbf{A}_{1n} \\ \vdots & \ddots & \vdots \\ \mathbf{A}_{n1} & \dots & \mathbf{A}_{nn} \end{bmatrix} \circ \begin{bmatrix} \mathbf{B}_{11} & \dots & \mathbf{B}_{1n} \\ \vdots & \ddots & \vdots \\ \mathbf{B}_{n1} & \dots & \mathbf{B}_{nn} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_{11}\mathbf{B}_{11} & \dots & \mathbf{A}_{1n}\mathbf{B}_{1n} \\ \vdots & \ddots & \vdots \\ \mathbf{A}_{n1}\mathbf{B}_{n1} & \dots & \mathbf{A}_{nn}\mathbf{B}_{nn} \end{bmatrix}$$

$$\frac{\mathrm{d}}{\mathrm{dt}} \begin{bmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \\ \vdots \\ \mathbf{u}_N \end{bmatrix} + \frac{1}{h} \begin{bmatrix} \mathbf{f}_S(\mathbf{u}_1, \mathbf{u}_2) - \mathbf{f}_S(\mathbf{u}_N, \mathbf{u}_1) \\ \mathbf{f}_S(\mathbf{u}_2, \mathbf{u}_3) - \mathbf{f}_S(\mathbf{u}_1, \mathbf{u}_2) \\ \vdots \\ \mathbf{f}_S(\mathbf{u}_N, \mathbf{u}_1) - \mathbf{f}_S(\mathbf{u}_{N-1}, \mathbf{u}_N) \end{bmatrix} = \mathbf{0}.$$

$$\begin{bmatrix} \mathbf{A}_{11} & \dots & \mathbf{A}_{1n} \\ \vdots & \ddots & \vdots \\ \mathbf{A}_{n1} & \dots & \mathbf{A}_{nn} \end{bmatrix} \circ \begin{bmatrix} \mathbf{B}_{11} & \dots & \mathbf{B}_{1n} \\ \vdots & \ddots & \vdots \\ \mathbf{B}_{n1} & \dots & \mathbf{B}_{nn} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_{11}\mathbf{B}_{11} & \dots & \mathbf{A}_{1n}\mathbf{B}_{1n} \\ \vdots & \ddots & \vdots \\ \mathbf{A}_{n1}\mathbf{B}_{n1} & \dots & \mathbf{A}_{nn}\mathbf{B}_{nn} \end{bmatrix}$$

$$h\frac{\mathrm{d}}{\mathrm{dt}} \begin{bmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \\ \vdots \\ \mathbf{u}_N \end{bmatrix} + \begin{bmatrix} \mathbf{F}_{1,2} - \mathbf{F}_{1,N} \\ \mathbf{F}_{2,3} - \mathbf{F}_{2,1} \\ \vdots \\ \mathbf{F}_{N,1} - \mathbf{F}_{N,N-1} \end{bmatrix} = \mathbf{0}, \qquad \mathbf{F}_{ij} = \mathbf{f}_S(\mathbf{u}_i, \mathbf{u}_j).$$

$$\begin{bmatrix} \mathbf{A}_{11} & \dots & \mathbf{A}_{1n} \\ \vdots & \ddots & \vdots \\ \mathbf{A}_{n1} & \dots & \mathbf{A}_{nn} \end{bmatrix} \circ \begin{bmatrix} \mathbf{B}_{11} & \dots & \mathbf{B}_{1n} \\ \vdots & \ddots & \vdots \\ \mathbf{B}_{n1} & \dots & \mathbf{B}_{nn} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_{11}\mathbf{B}_{11} & \dots & \mathbf{A}_{1n}\mathbf{B}_{1n} \\ \vdots & \ddots & \vdots \\ \mathbf{A}_{n1}\mathbf{B}_{n1} & \dots & \mathbf{A}_{nn}\mathbf{B}_{nn} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{F}_{1,2} - \mathbf{F}_{1,N} \\ \mathbf{F}_{2,3} - \mathbf{F}_{2,1} \\ \vdots \\ \mathbf{F}_{N,1} - \mathbf{F}_{N,N-1} \end{bmatrix} = \left( \underbrace{\begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 & \\ & \ddots & \ddots & 1 \\ 1 & -1 & 0 \end{bmatrix}}_{\mathbf{2Q}} \circ \underbrace{\begin{bmatrix} \mathbf{F}_{1,1} & \dots & \mathbf{F}_{1,N} \\ \vdots & \ddots & \vdots \\ \mathbf{F}_{N,1} & \dots & \mathbf{F}_{N,N} \end{bmatrix}}_{\mathbf{F}} \right) \mathbf{1}$$

$$\begin{bmatrix} \mathbf{A}_{11} & \dots & \mathbf{A}_{1n} \\ \vdots & \ddots & \vdots \\ \mathbf{A}_{n1} & \dots & \mathbf{A}_{nn} \end{bmatrix} \circ \begin{bmatrix} \mathbf{B}_{11} & \dots & \mathbf{B}_{1n} \\ \vdots & \ddots & \vdots \\ \mathbf{B}_{n1} & \dots & \mathbf{B}_{nn} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_{11}\mathbf{B}_{11} & \dots & \mathbf{A}_{1n}\mathbf{B}_{1n} \\ \vdots & \ddots & \vdots \\ \mathbf{A}_{n1}\mathbf{B}_{n1} & \dots & \mathbf{A}_{nn}\mathbf{B}_{nn} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{F}_{1,2} - \mathbf{F}_{1,N} \\ \mathbf{F}_{2,3} - \mathbf{F}_{2,1} \\ \vdots \\ \mathbf{F}_{N,1} - \mathbf{F}_{N,N-1} \end{bmatrix} = 2(\mathbf{Q} \circ \mathbf{F})\mathbf{1}.$$

Let  $\mathbf{M} = h\mathbf{I}$ . Can reformulate entropy conservative finite volumes as

$$\mathbf{M}\frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t} + 2\left(\mathbf{Q}\circ\mathbf{F}\right)\mathbf{1} = \mathbf{0}, \qquad \mathbf{Q} = \frac{1}{2}\begin{bmatrix} 0 & 1 & -1\\ -1 & 0 & 1 & \\ & \ddots & \ddots & 1\\ 1 & & -1 & 0 \end{bmatrix}$$

Key observation: generalizable beyond finite volumes Entropy conservation for any  $\mathbf{Q} = -\mathbf{Q}^T$  and  $\mathbf{Q} = \mathbf{0}$  ! skew-symmetry

Note that  $M^{-1}Q$  is a periodic differentiation matrix.

Let M = hI. Can reformulate entropy conservative finite volumes as

$$\mathbf{M}\frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t} + 2\left(\mathbf{Q}\circ\mathbf{F}\right)\mathbf{1} = \mathbf{0}, \qquad \mathbf{Q} = \frac{1}{2}\begin{bmatrix} 0 & 1 & -1\\ -1 & 0 & 1 & \\ & \ddots & \ddots & 1\\ 1 & & -1 & 0 \end{bmatrix}$$

Key observation: generalizable beyond finite volumes Entropy conservation for any  $\mathbf{Q} = -\mathbf{Q}^T$  and  $\mathbf{Q}\mathbf{1} = \mathbf{0}$  ! skew-symmetry conservative

Note that  $\mathbf{M}^{-1}\mathbf{Q}$  is a periodic differentiation matrix.

# Reduced order modeling

• Assume a POD basis s.t.  $\mathbf{u} \approx \mathbf{V} \mathbf{u}_N$ . Galerkin projection gives

$$\mathbf{V}^T \mathbf{M} \mathbf{V} \frac{\mathrm{d} \mathbf{u}_N}{\mathrm{d} t} + 2 \mathbf{V}^T \left( \mathbf{Q} \circ \mathbf{F} \right) \mathbf{1} = 0.$$

 Test with projection of entropy variables for discrete entropy balance. Let V<sup>†</sup> = pseudoinverse, v = VV<sup>†</sup>v (Vu<sub>N</sub>)

$$\left( \mathbf{V}^{\dagger} \boldsymbol{v} \left( \mathbf{V} \mathbf{u}_{N} \right) \right)^{T} \left( \mathbf{V}^{T} \mathbf{M} \mathbf{V} \frac{\mathrm{d} \mathbf{u}_{N}}{\mathrm{dt}} + \mathbf{V}^{T} \left( \mathbf{Q} \circ \mathbf{F} \right) \mathbf{1} \right) = 0$$

$$\Longrightarrow \underbrace{\mathbf{1}^{T} \mathbf{M} \frac{\mathrm{d} S \left( \mathbf{V} \mathbf{u}_{N} \right)}{\mathrm{dt}}}_{\text{rate of change - avg. entropy}} + \widetilde{\mathbf{v}}^{T} 2 \left( \mathbf{Q} \circ \mathbf{F} \right) \mathbf{1} = 0.$$

• Assume a POD basis s.t.  $\mathbf{u} \approx \mathbf{V} \mathbf{u}_N$ . Galerkin projection gives

$$\mathbf{V}^{T}\mathbf{M}\mathbf{V}\frac{\mathrm{d}\mathbf{u}_{N}}{\mathrm{d}t}+2\mathbf{V}^{T}\left(\mathbf{Q}\circ\mathbf{F}\right)\mathbf{1}=0.$$

$$\left(\mathbf{V}^{\dagger}\boldsymbol{v}\left(\mathbf{V}\mathbf{u}_{N}\right)\right)^{T}\left(\mathbf{V}^{T}\mathbf{M}\mathbf{V}\frac{\mathrm{d}\mathbf{u}_{N}}{\mathrm{d}t}+\mathbf{V}^{T}\left(\mathbf{Q}\circ\mathbf{F}\right)\mathbf{1}\right)=0$$
$$\Longrightarrow\mathbf{1}^{T}\mathbf{M}\frac{\mathrm{d}S\left(\mathbf{V}\mathbf{u}_{N}\right)}{\mathrm{d}t}+\underbrace{\tilde{\mathbf{v}}^{T}2\left(\mathbf{Q}\circ\mathbf{F}\right)\mathbf{1}}_{\mathrm{current transformation}}=0.$$

zero if entropy conservative

## Entropy projection and discrete entropy stability

• Loss of entropy conservation:  $\widetilde{\mathbf{v}} = \mathbf{V} \mathbf{V}^{\dagger} \boldsymbol{v} \left( \mathbf{V} \mathbf{u}_N 
ight) 
eq \boldsymbol{v} \left( \mathbf{V} \mathbf{u}_N 
ight)$ 

$$\widetilde{\mathbf{v}}^{T} 2 \left( \mathbf{Q} \circ \mathbf{F} \right) \mathbf{1} = \sum_{ij} \mathbf{Q}_{ij} \left( \widetilde{\mathbf{v}}_{i} - \widetilde{\mathbf{v}}_{j} \right)^{T} \mathbf{f}_{S} \left( \mathbf{u}_{i}, \mathbf{u}_{j} \right)$$
$$\neq \sum_{ij} \mathbf{Q}_{ij} \left( \psi(\mathbf{u}_{i}) - \psi(\mathbf{u}_{j}) \right) = 0.$$

• Restore entropy conservation by re-evaluating  $\widetilde{\mathbf{u}}=\boldsymbol{u}\left(\widetilde{\mathbf{v}}\right).$ 

$$\mathbf{V}^{T}\mathbf{M}\mathbf{V}\frac{\mathrm{d}\mathbf{u}_{N}}{\mathrm{d}t}+2\mathbf{V}^{T}\left(\mathbf{Q}\circ\mathbf{F}\right)\mathbf{1}=0,\qquad\left(\mathbf{F}\right)_{ij}=\boldsymbol{f}_{S}\left(\widetilde{\mathbf{u}}_{i},\widetilde{\mathbf{u}}_{j}\right).$$

For accuracy, we compute POD basis from snapshots of both conservative and entropy variables.

All results use Laplacian art. viscosity εKu for entropy stability.

## Entropy projection and discrete entropy stability

• Loss of entropy conservation:  $\widetilde{\mathbf{v}} = \mathbf{V} \mathbf{V}^{\dagger} \boldsymbol{v} \left( \mathbf{V} \mathbf{u}_N 
ight) 
eq \boldsymbol{v} \left( \mathbf{V} \mathbf{u}_N 
ight)$ 

$$\widetilde{\mathbf{v}}^{T} 2 \left( \mathbf{Q} \circ \mathbf{F} \right) \mathbf{1} = \sum_{ij} \mathbf{Q}_{ij} \left( \widetilde{\mathbf{v}}_{i} - \widetilde{\mathbf{v}}_{j} \right)^{T} \mathbf{f}_{S} \left( \mathbf{u}_{i}, \mathbf{u}_{j} \right)$$
$$\neq \sum_{ij} \mathbf{Q}_{ij} \left( \psi(\mathbf{u}_{i}) - \psi(\mathbf{u}_{j}) \right) = 0.$$

• Restore entropy conservation by re-evaluating  $\widetilde{\mathbf{u}}=\boldsymbol{u}\left(\widetilde{\mathbf{v}}\right).$ 

$$\mathbf{V}^{T}\mathbf{M}\mathbf{V}\frac{\mathrm{d}\mathbf{u}_{N}}{\mathrm{d}t}+2\mathbf{V}^{T}\left(\mathbf{Q}\circ\mathbf{F}\right)\mathbf{1}=0,\qquad\left(\mathbf{F}\right)_{ij}=\boldsymbol{f}_{S}\left(\widetilde{\mathbf{u}}_{i},\widetilde{\mathbf{u}}_{j}\right).$$

For accuracy, we compute POD basis from snapshots of both conservative and entropy variables.

• All results use Laplacian art. viscosity  $\epsilon \mathbf{K} \mathbf{u}$  for entropy stability.

## Evaluating nonlinear ROM terms dominates costs

Cost of nonlinear terms still scales with FOM size.

$$\widetilde{\mathbf{u}} = \boldsymbol{u} \left( \mathbf{V} \mathbf{V}^{\dagger} \boldsymbol{v} \left( \mathbf{V} \mathbf{u}_{N} \right) \right), \qquad 2 \left( \mathbf{Q} \circ \mathbf{F} \right) \mathbf{1}$$

 Hyper-reduction approximate nonlinear evaluations.

 $\mathbf{V}^{T} \boldsymbol{g}(\mathbf{V} \mathbf{u}_{N}) \approx \\ \underbrace{\mathbf{V}(\mathcal{I},:)^{T}}_{\text{sampled rows}} \mathbf{W} \boldsymbol{g}(\mathbf{V}(\mathcal{I},:) \mathbf{u}_{N})$ 

• Examples: gappy POD, DEIM, empirical cubature, ECSW, ....



Farhat et al. Bui/Willcox, Chantarantabut/Sorensen, Patera/Yano, Hernandez et al., ...

Cost of nonlinear terms still scales with FOM size.

$$\widetilde{\mathbf{u}} = \boldsymbol{u} \left( \mathbf{V} \mathbf{V}^{\dagger} \boldsymbol{v} \left( \mathbf{V} \mathbf{u}_{N} \right) \right), \qquad 2 \left( \mathbf{Q} \circ \mathbf{F} \right) \mathbf{1}$$

• Hyper-reduction approximate nonlinear evaluations.

$$\mathbf{V}^{T} \boldsymbol{g}(\mathbf{V} \mathbf{u}_{N}) \approx \underbrace{\mathbf{V}(\mathcal{I},:)^{T}}_{\text{sampled rows}} \mathbf{W} \boldsymbol{g}(\mathbf{V}(\mathcal{I},:) \mathbf{u}_{N})$$

• Examples: gappy POD, DEIM, empirical cubature, ECSW, ...



Farhat et al. Bui/Willcox, Chantarantabut/Sorensen, Patera/Yano, Hernandez et al., ...

Cost of nonlinear terms still scales with FOM size.

$$\widetilde{\mathbf{u}} = \boldsymbol{u} \left( \mathbf{V} \mathbf{V}^{\dagger} \boldsymbol{v} \left( \mathbf{V} \mathbf{u}_{N} \right) \right), \qquad 2 \left( \mathbf{Q} \circ \mathbf{F} \right) \mathbf{1}$$

• Hyper-reduction approximate nonlinear evaluations.

$$\mathbf{V}^T oldsymbol{g}(\mathbf{V}\mathbf{u}_N) pprox \ \mathbf{V}(\mathcal{I},:)^T \underbrace{\mathbf{W}}_{ ext{weight}} oldsymbol{g}(\mathbf{V}(\mathcal{I},:)\mathbf{u}_N)$$

• Examples: gappy POD, DEIM, empirical cubature, ECSW, ....



Farhat et al. Bui/Willcox, Chantarantabut/Sorensen, Patera/Yano, Hernandez et al., ...

 $(\mathbf{Q} \circ \mathbf{F}) \approx (\mathbf{Q}_s \circ \mathbf{F})$ . Must preserve  $\mathbf{Q}_s = -\mathbf{Q}_s^T$  and  $\mathbf{Q}_s \mathbf{1} = \mathbf{0}!$ 

1. Compress **Q** onto an expanded "test" basis  $\mathbf{V}_t$ 

$$\mathbf{V}_t^T \mathbf{Q} \mathbf{V}_t, \qquad \mathbf{V}_t = \mathrm{orth} \left( egin{bmatrix} \mathbf{V} & \mathbf{1} & \mathbf{Q} \mathbf{V} \end{bmatrix} 
ight)$$

2. Hyper-reduced projection to determine test basis coefficients

$$\mathbf{M}_t = \mathbf{V}_t(\mathcal{I}, :)^T \mathbf{W} \mathbf{V}_t(\mathcal{I}, :), \qquad \mathbf{P}_t = \mathbf{M}_t^{-1} \mathbf{V}_t(\mathcal{I}, :)^T \mathbf{W}.$$

3. Define hyper-reduced matrix  $\mathbf{Q}_s$ 

$$\mathbf{Q}_s = \mathbf{P}_t^T \left( \mathbf{V}_t^T \mathbf{Q} \mathbf{V}_t 
ight) \mathbf{P}_t.$$

 $\Longrightarrow \mathbf{Q}_s$  is skew-symmetric, conservative, and accurate.

Hernandez et al. (2017). Dimensional hyper-reduction of nonlinear FE models via empirical cubature. Carlberg, Barone, Antil (2017). Galerkin v. LSPG projection in nonlinear model reduction.

 $(\mathbf{Q} \circ \mathbf{F}) \approx (\mathbf{Q}_s \circ \mathbf{F})$ . Must preserve  $\mathbf{Q}_s = -\mathbf{Q}_s^T$  and  $\mathbf{Q}_s \mathbf{1} = \mathbf{0}!$ 

1. Compress  $\mathbf{Q}$  onto an expanded "test" basis  $\mathbf{V}_t$ 

$$\mathbf{V}_t^T \mathbf{Q} \mathbf{V}_t, \qquad \mathbf{V}_t = \operatorname{orth} \left( \begin{bmatrix} \mathbf{V} & \mathbf{1} & \mathbf{Q} \mathbf{V} \end{bmatrix} \right)$$

2. Hyper-reduced projection to determine test basis coefficients

$$\mathbf{M}_t = \mathbf{V}_t(\mathcal{I},:)^T \mathbf{W} \mathbf{V}_t(\mathcal{I},:), \qquad \mathbf{P}_t = \mathbf{M}_t^{-1} \mathbf{V}_t(\mathcal{I},:)^T \mathbf{W}.$$

3. Define hyper-reduced matrix  $\mathbf{Q}_s$ 

$$\mathbf{Q}_s = \mathbf{P}_t^T \left( \mathbf{V}_t^T \mathbf{Q} \mathbf{V}_t 
ight) \mathbf{P}_t.$$

#### $\Rightarrow$ **Q** $_s$ is skew-symmetric, conservative, and accurate.

Hernandez et al. (2017). Dimensional hyper-reduction of nonlinear FE models via empirical cubature. Carlberg, Barone, Antil (2017). Galerkin v. LSPG projection in nonlinear model reduction.

 $(\mathbf{Q} \circ \mathbf{F}) \approx (\mathbf{Q}_s \circ \mathbf{F})$ . Must preserve  $\mathbf{Q}_s = -\mathbf{Q}_s^T$  and  $\mathbf{Q}_s \mathbf{1} = \mathbf{0}!$ 

1. Compress  $\mathbf{Q}$  onto an expanded "test" basis  $\mathbf{V}_t$ 

$$\mathbf{V}_t^T \mathbf{Q} \mathbf{V}_t, \qquad \mathbf{V}_t = \operatorname{orth} \left( \begin{bmatrix} \mathbf{V} & \mathbf{1} & \mathbf{Q} \mathbf{V} \end{bmatrix} \right)$$

2. Hyper-reduced projection to determine test basis coefficients

$$\mathbf{M}_t = \mathbf{V}_t(\mathcal{I},:)^T \mathbf{W} \mathbf{V}_t(\mathcal{I},:), \qquad \mathbf{P}_t = \mathbf{M}_t^{-1} \mathbf{V}_t(\mathcal{I},:)^T \mathbf{W}.$$

3. Define hyper-reduced matrix  $\mathbf{Q}_s$ 

$$\mathbf{Q}_s = \mathbf{P}_t^T \left( \mathbf{V}_t^T \mathbf{Q} \mathbf{V}_t 
ight) \mathbf{P}_t.$$

 $\Rightarrow$  **Q** $_s$  is skew-symmetric, conservative, and accurate.

Hernandez et al. (2017). Dimensional hyper-reduction of nonlinear FE models via empirical cubature. Carlberg, Barone, Antil (2017). Galerkin v. LSPG projection in nonlinear model reduction.

 $(\mathbf{Q} \circ \mathbf{F}) \approx (\mathbf{Q}_s \circ \mathbf{F})$ . Must preserve  $\mathbf{Q}_s = -\mathbf{Q}_s^T$  and  $\mathbf{Q}_s \mathbf{1} = \mathbf{0}!$ 

1. Compress  $\mathbf{Q}$  onto an expanded "test" basis  $\mathbf{V}_t$ 

$$\mathbf{V}_t^T \mathbf{Q} \mathbf{V}_t, \qquad \mathbf{V}_t = \operatorname{orth} \left( \begin{bmatrix} \mathbf{V} & \mathbf{1} & \mathbf{Q} \mathbf{V} \end{bmatrix} \right)$$

2. Hyper-reduced projection to determine test basis coefficients

$$\mathbf{M}_t = \mathbf{V}_t(\mathcal{I},:)^T \mathbf{W} \mathbf{V}_t(\mathcal{I},:), \qquad \mathbf{P}_t = \mathbf{M}_t^{-1} \mathbf{V}_t(\mathcal{I},:)^T \mathbf{W}.$$

3. Define hyper-reduced matrix  $\mathbf{Q}_s$ 

$$\mathbf{Q}_s = \mathbf{P}_t^T \left( \mathbf{V}_t^T \mathbf{Q} \mathbf{V}_t 
ight) \mathbf{P}_t.$$

 $\implies$  **Q**<sub>s</sub> is skew-symmetric, conservative, and accurate.

Hernandez et al. (2017). Dimensional hyper-reduction of nonlinear FE models via empirical cubature. Carlberg, Barone, Antil (2017). Galerkin v. LSPG projection in nonlinear model reduction.

# A hyper-reduced entropy conservative ROM

 Approx. integrals of target space of inner products of POD basis (most accurate + smallest number of points in practice)

Target space = span { $\phi_i(\boldsymbol{x})\phi_j(\boldsymbol{x}), \quad 1 \leq i, j \leq N$  }.

- Add "stabilizing" points to avoid singular test mass matrix  $M_t$ .
- Entropy stable reduced order model with hyper-reduction:

$$\mathbf{V}(\mathcal{I},:)^{T}\mathbf{W}\mathbf{V}(\mathcal{I},:)\frac{\mathrm{d}\mathbf{u}_{N}}{\mathrm{d}t}+2\mathbf{V}(\mathcal{I},:)^{T}\left(\mathbf{Q}_{s}\circ\mathbf{F}\right)\mathbf{1}=0,$$
$$\mathbf{F}_{ij}=\boldsymbol{f}_{S}\left(\widetilde{\mathbf{u}}_{i},\widetilde{\mathbf{u}}_{j}\right),\quad\widetilde{\mathbf{u}}=\boldsymbol{u}\left(\mathbf{V}(\mathcal{I},:)\mathbf{P}\boldsymbol{v}\left(\mathbf{V}\mathbf{u}_{N}\right)\right),$$

where **P** is the projection onto POD modes.

Hernandez et al. (2017). Dimensional hyper-reduction of nonlinear FE models via empirical cubature. 11/21

## A hyper-reduced entropy conservative ROM

 Approx. integrals of target space of inner products of POD basis (most accurate + smallest number of points in practice)

Target space = span { $\phi_i(\boldsymbol{x})\phi_j(\boldsymbol{x}), \quad 1 \leq i, j \leq N$  }.

- Add "stabilizing" points to avoid singular test mass matrix  $M_t$ .
- Entropy stable reduced order model with hyper-reduction:

$$\mathbf{V}(\mathcal{I},:)^{T}\mathbf{W}\mathbf{V}(\mathcal{I},:)\frac{\mathrm{d}\mathbf{u}_{N}}{\mathrm{d}t} + 2\mathbf{V}(\mathcal{I},:)^{T}\left(\mathbf{Q}_{s}\circ\mathbf{F}\right)\mathbf{1} = 0,$$
  
$$\mathbf{F}_{ij} = \mathbf{f}_{S}\left(\widetilde{\mathbf{u}}_{i},\widetilde{\mathbf{u}}_{j}\right), \quad \widetilde{\mathbf{u}} = \mathbf{u}\left(\mathbf{V}(\mathcal{I},:)\mathbf{P}\mathbf{v}\left(\mathbf{V}\mathbf{u}_{N}\right)\right),$$

where **P** is the projection onto POD modes.

Hernandez et al. (2017). Dimensional hyper-reduction of nonlinear FE models via empirical cubature. 11/21

## Non-periodic boundary conditions

- Impose BCs via FV fluxes + summation-by-parts operators.
- In 2D and 3D, entropy stability requires a discrete integration-by-parts property involving surface interpolation matrix V<sub>f</sub> + hyper-reduced surface weights w<sub>f</sub>.

$$\begin{aligned} \mathbf{V}_t^T \mathbf{Q}_x^T \mathbf{1} &= \mathbf{V}_f^T \left( \mathbf{n}_x \circ \mathbf{w}_f \right), \\ \mathbf{V}_t^T \mathbf{Q}_y^T \mathbf{1} &= \mathbf{V}_f^T \left( \mathbf{n}_y \circ \mathbf{w}_f \right). \end{aligned}$$

Enforce conditions using constrained hyper-reduction + LP.

Patera and Yano (2017). An LP empirical quadrature procedure for parametrized functions.

Chan (2018). On discretely entropy conservative and entropy stable discontinuous Galerkin methods.

Chan (2019). Skew-symmetric entropy stable modal discontinuous Galerkin formulations.

#### 1D Euler with reflective BCs + shock



FOM with 2500 points, viscosity  $\epsilon = 2 \times 10^{-4}$ , ROM with 25, 75, 125 modes.

| Number of modes $N$                 | 25 | 75  | 125 | 175 |
|-------------------------------------|----|-----|-----|-----|
| Number of empirical cubature points | 54 | 158 | 259 | 355 |
| Number of stabilizing points        | 3  | 21  | 36  | 28  |

#### 1D Euler with reflective BCs + shock



FOM with 2500 points, viscosity  $\epsilon = 2 \times 10^{-4}$ , ROM with 25, 75, 125 modes.

| Number of modes $N$                 | 25 | 75  | 125 | 175 |
|-------------------------------------|----|-----|-----|-----|
| Number of empirical cubature points | 54 | 158 | 259 | 355 |
| Number of stabilizing points        | 3  | 21  | 36  | 28  |

#### 1D Euler with reflective BCs + shock



FOM with 2500 points, viscosity  $\epsilon = 2 \times 10^{-4}$ , ROM with 25, 75, 125 modes.

| Number of modes $N$                 | 25 | 75  | 125 | 175 |
|-------------------------------------|----|-----|-----|-----|
| Number of empirical cubature points | 54 | 158 | 259 | 355 |
| Number of stabilizing points        | 3  | 21  | 36  | 28  |

#### Error with and without hyper-reduction



Error over time for a K = 2500 FOM and ROM with 25, 75, 125 modes.

#### Entropy conservation test



**Figure 1:** Reduced order solution and discrete entropy production  $\left| \widetilde{\mathbf{v}}^T \mathbf{V} (\mathcal{I},:)^T (2\mathbf{Q}_s \circ \mathbf{F}) \mathbf{1} \right|$  when setting  $\epsilon = 0$  (zero viscosity).

## 2D Kelvin-Helmholtz instability



(a) Density, full order model

(b) Reduced order model

FOM with  $200 \times 200$  points, viscosity  $\epsilon = 10^{-3}$ . ROM with 75 modes, 884 reduced points (no stabilizing points), 1.02% rel.  $L^2$  error at T = 3.

## 2D Kelvin-Helmholtz instability



(c) Density, full order model (d) ROM w/reduced quad. points

FOM with  $200 \times 200$  points, viscosity  $\epsilon = 10^{-3}$ . ROM with 75 modes, 884 reduced points (no stabilizing points), 1.02% rel.  $L^2$  error at T = 3.

## 2D Gaussian pulse with reflective wall



(a) Density, full order model

(b) Reduced order model

FOM with  $100 \times 100$  grid points, viscosity  $\epsilon = 10^{-3}$ . ROM with 25 modes, 306 volume points (one stabilizing point), 82 surface points, .57% relative error at T = .25.

## 2D Gaussian pulse with reflective wall



(c) Density, full order model (d) ROM w/reduced quad. points

FOM with  $100 \times 100$  grid points, viscosity  $\epsilon = 10^{-3}$ . ROM with 25 modes, 306 volume points (one stabilizing point), 82 surface points, .57% relative error at T = .25.

## 2D Riemann problem on periodic domain



(a) Full order model (b) Reduced order model, 50 modes

FOM with  $200 \times 200$  points, viscosity  $\epsilon = 5 \times 10^{-3}$ , T = .25. ROM with 50 modes, 812 reduced quadrature points (no stabilizing points), 3.278% relative  $L^2$  error.

## 2D Riemann problem on periodic domain



(c) Full order model

(d) ROM w/reduced quad. points

FOM with  $200 \times 200$  points, viscosity  $\epsilon = 5 \times 10^{-3}$ , T = .25. ROM with 50 modes, 812 reduced quadrature points (no stabilizing points), 3.278% relative  $L^2$  error.

Explicit-in-time: compute  $(\mathbf{Q} \circ \mathbf{F}) \mathbf{1} \Rightarrow \sum_{j} \mathbf{Q}_{ij} f_{S}(\mathbf{u}_{i}, \mathbf{u}_{j})$  on the fly.



 $\mathbf{Q}_s$  smaller but dense:  $(\mathbf{Q}_s \circ \mathbf{F}) \mathbf{1}$  can be more expensive!

Current directions: implicit time-stepping (leverage recent work on efficient computation of entropy stable Jacobian matrices).

Jacobian timings for Burgers' equation and matrices  $\mathbf{Q} \in \mathbb{R}^{N imes N}$ .

|                                    | N = 10 | N = 25 | N = 50  |
|------------------------------------|--------|--------|---------|
| Direct automatic differentiation   | 5.666  | 60.388 | 373.633 |
| FiniteDiff.jl                      | 1.429  | 17.324 | 125.894 |
| Jacobian formula (analytic deriv.) | .209   | 1.005  | 3.249   |
| Jacobian formula (AD flux deriv.)  | .210   | 1.030  | 3.259   |
| One explicit RHS eval. (reference) | .120   | .623   | 2.403   |

Chan, Taylor (2020). Efficient computation of Jacobian matrices for ES-SBP schemes.

## Summary and future work

- Entropy stable modal formulations and reduced order modeling improve robustness while retaining accuracy.
- Current work: implicit time-stepping.

This work is supported by the NSF under awards DMS-1719818, DMS-1712639, and DMS-CAREER-1943186.

Thank you! Questions?



Chan, Taylor (2020). Efficient computation of Jacobian matrices for ES-SBP schemes.

Chan (2020). Entropy stable reduced order modeling of nonlinear conservation laws.

Chan (2018). On discretely entropy conservative and entropy stable discontinuous Galerkin methods. 21/21

## Additional slides

## Example of EC fluxes (compressible Euler equations)

• Define average  $\{\{u\}\} = \frac{1}{2}(u_L + u_R)$ . In one dimension:

$$\begin{split} f_{S}^{1}(\boldsymbol{u}_{L},\boldsymbol{u}_{R}) &= \{\{\rho\}\}^{\log} \{\{u\}\}\\ f_{S}^{2}(\boldsymbol{u}_{L},\boldsymbol{u}_{R}) &= \{\{u\}\} f_{S}^{1} + p_{\text{avg}}\\ f_{S}^{3}(\boldsymbol{u}_{L},\boldsymbol{u}_{R}) &= (E_{\text{avg}} + p_{\text{avg}}) \{\{u\}\}\,, \end{split}$$

$$p_{\text{avg}} = \frac{\{\{\rho\}\}}{2\{\{\beta\}\}}, \qquad E_{\text{avg}} = \frac{\{\{\rho\}\}^{\log}}{2\{\{\beta\}\}^{\log}(\gamma - 1)} + \frac{1}{2}u_L u_R.$$

• Non-standard logarithmic mean, "inverse temperature"  $\beta$ 

$$\{\{u\}\}^{\log} = \frac{u_L - u_R}{\log u_L - \log u_R}, \qquad \beta = \frac{\rho}{2p}.$$

Chandreshekar (2013), Kinetic energy preserving and entropy stable finite volume schemes for the compressible Euler and Navier-Stokes equations.

## Accuracy of the expanded test basis

• If  $\mathbf{V}_t = \operatorname{orth} \left( \begin{bmatrix} \mathbf{V} & \mathbf{1} \end{bmatrix} \right)$ , then the modes  $\mathbf{V}_t$  can sample  $\mathbf{Q}\mathbf{V}$  very poorly, e.g.,  $\mathbf{V}_t^T \mathbf{Q} \mathbf{V}_t \approx \mathbf{0}$ !



(a) Shock snapshots (b) Modes (V columns) (c) Mode derivatives QV

• Fix: further expand the test basis V<sub>t</sub> by adding QV

$$\mathbf{V}_t = \operatorname{orth}\left(\begin{bmatrix} \mathbf{V} & \mathbf{1} & \mathbf{Q}\mathbf{V} \end{bmatrix}\right), \qquad \mathbf{V}_t^T \mathbf{Q} \mathbf{V}_t \in \mathbb{R}^{(2N+1) \times (2N+1)}.$$

Carlberg, Barone, Antil (2017). Galerkin v. LSPG projection in nonlinear model reduction.



Figure from Gebremedhin, Manne, Pothen (2005), What color is your Jacobian? Graph coloring for computing derivatives.

- Implicit time-stepping: compute Jacobian matrices using automatic differentiation (AD)
- Graph coloring reduces costs, but only for sparse matrices
- Cost of AD scales with input and output dimensions.

#### Theorem

Assume  $\mathbf{Q} = \pm \mathbf{Q}^T$ . Consider a scalar "collocation" discretization

$$\mathbf{r}(\mathbf{u}) = (\mathbf{Q} \circ \mathbf{F}) \mathbf{1}, \qquad \mathbf{F}_{ij} = f_S(\mathbf{u}_i, \mathbf{u}_j).$$

The Jacobian matrix is then

$$\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}\mathbf{u}} = (\mathbf{Q} \circ \partial \mathbf{F}_R) \pm \mathrm{diag} \left( \mathbf{1}^T \left( \mathbf{Q} \circ \partial \mathbf{F}_R \right) \right),$$
$$\left( \partial \mathbf{F}_R \right)_{ij} = \left. \frac{\partial f_S(u_L, u_R)}{\partial u_R} \right|_{\mathbf{u}_i, \mathbf{u}_j}.$$

#### AD is efficient for O(1) inputs/outputs!

Separates discretization matrix  ${\bf Q}$  and AD for flux contributions

## Singular value decay with entropy variable enrichment



Decay of solution snapshot singular values with entropy variable enrichment is slower for transport or shock solutions.

## Singular value decay with entropy variable enrichment



Decay of solution snapshot singular values with entropy variable enrichment is slower for transport or shock solutions.