Example: approximating derivatives using DG
MeshData
can be used to compute DG derivatives. Suppose $f$ is a differentiable function and the domain $\Omega$ can be decomposed into non-overlapping elements $D^k$. The approximation of $\frac{\partial f}{\partial x}$ can be approximated using the following formulation: find piecewise polynomial $u$ such that for all piecewise polynomials $v$
\[\int_{\Omega} u v = \sum_k \left( \int_{D^k} \frac{\partial u}{\partial x}v + \int_{\partial D^k} \frac{1}{2} \left[u\right]n_x v \right)\]
Here, $\left[u\right] = u^+ - u$ denotes the jump across an element interface, and $n_x$ is the $x$-component of the outward unit normal on $D^k$.
Discretizing the left-hand side of this formulation yields a mass matrix. Inverting this mass matrix to the right hand side yields the DG derivative. We show how to compute it for a uniform triangular mesh using MeshData
and StartUpDG.jl
.
We first construct the triangular mesh and initialize md::MeshData
.
using StartUpDG
using Plots
N = 3
K1D = 8
rd = RefElemData(Tri(),N)
VX,VY,EToV = uniform_mesh(Tri(),K1D)
md = MeshData(VX,VY,EToV,rd)
We can approximate a function $f(x,y)$ using interpolation
f(x,y) = exp(-5*(x^2+y^2))*sin(1+pi*x)*sin(2+pi*y)
@unpack x,y = md
u = @. f(x,y)
or using quadrature-based projection
@unpack Pq = rd
@unpack x,y,xq,yq = md
u = Pq*f.(xq,yq)
We can use scatter
in Plots.jl to quickly visualize the approximation. This is not intended to create a high quality image (see other libraries, e.g., Makie.jl
,VTK.jl
, or Triplot.jl
for publication-quality images).
@unpack Vp = rd
xp,yp,up = Vp*x,Vp*y,Vp*u # interp to plotting points
scatter(xp,yp,uxp,zcolor=uxp,msw=0,leg=false,ratio=1,cam=(0,90))
Both interpolation and projection create a matrix u
of size $N_p \times K$ which contains coefficients (nodal values) of the DG polynomial approximation to $f(x,y)$. We can approximate the derivative of $f(x,y)$ using the DG derivative formulation
function dg_deriv_x(u,md::MeshData,rd::RefElemData)
@unpack Vf,Dr,Ds,LIFT = rd
@unpack rxJ,sxJ,J,nxJ,mapP = md
uf = Vf*u
ujump = uf[mapP]-uf
# derivatives using chain rule + lifted flux terms
ux = rxJ.*(Dr*u) + sxJ.*(Ds*u)
dudxJ = ux + LIFT*(.5*ujump.*nxJ)
return dudxJ./J
end
We can visualize the result as follows:
dudx = dg_deriv_x(u,md,rd)
uxp = Vp*dudx
scatter(xp,yp,uxp,zcolor=uxp,msw=0,leg=false,ratio=1,cam=(0,90))
Plots of the polynomial approximation $u(x,y)$ and the DG approximation of $\frac{\partial u}{\partial x}$ are given below
⠀